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Abstract—Multi-Dimensional Connectionist Classification is a
method for weakly supervised training of Deep Neural Networks
for segmentation-free multi-line offline handwriting recognition.
MDCC applies Conditional Random Fields as an alignment
function for this task. We discuss the structure and patterns of
handwritten text that can be used for building a CRF. Since CRFs
are cyclic graphical models, we have to resort to approximate
inference when calculating the alignment of multi-line text during
training, here in the form of Loopy Belief Propagation. This work
concludes with experimental results for transcribing small multi-
line samples from the IAM Offline Handwriting DB which show
that MDCC is a competitive methodology.

I. INTRODUCTION

Offline handwriting recognition is the automatic transcrip-

tion of natural handwritten text from images to computer-

processable character strings. Often this involves the transcrip-

tion of paragraphs of multiple text lines. One approach to

process multi-line texts is to segment the paragraph image into

multiple line images and then transcribe each line on its own.

This approach in combination with Connectionist Temporal

Classification (CTC) [1] has lead to state-of-the-art systems

[2] [3] [4] [5] in recent years.

A well known problem with this general approach is that

both segmentation and transcription are prone to errors which

accumulate. Errors in segmentation may lead to larger errors in

transcription. This dependency is described as Sayre’s knot [6]:

Correct segmentation requires correct transcription; correct

transcription requires correct segmentation.

One way to untangle these dependencies is to not treat

segmentation and transcription as two separate procedures but

as two aspects of one single procedure. A recently proposed

method [7] [8] simultaneously uses a Deep Neural Network

(DNN) with an attention-mechanism for segmentation by steer-

ing attention and CTC for transcription. This is an explicit

transformation of the multi-line text to a one-dimensional

sequence. Another method is Multi-Dimensional Connectionist

Classification (MDCC) [9] which proposes a loss function

and decoding algorithm that allows for training a DNN to

transcribe multi-line text without segmentation and without

explicit transformation to a one-dimensional sequence.

MDCC consists of two separate procedures: first, an

Expectation-Maximization-style training using Conditional

Random Fields (CRFs) [10] and Loopy Belief Propagation

(LBP) [11] [12, p. 769] to align the truth label string to the two-

dimensional DNN output and defining a loss function to train

the DNN to estimate the correct probabilities of individual

‘pixels’ belonging to certain glyphs. CRFs and LBP are well

known methods in computer vision. Second, decoding this

probabilistic DNN output to retrieve a computer-processable

character string of the multi-line text. These procedures are

shown schematically in Figure 1.

MDCC requires the DNN to accept a two-dimensional

image of text as input and to produce a two-dimensional output

where each ‘pixel’ is a probability vector estimating that this

‘pixel’ is part of a certain glyph from the alphabet. The actual

DNN topology can be chosen according to the problem at

hand. DNNs based on Multi-Dimensional Long Short-Term

Memory (MDLSTM) [13] [14] have been used for MDCC

before. We used a hybrid CNN+LSTM network [15] for this

work.

Training the DNN using MDCC is based on stochastic or

mini-batch gradient descent using backpropagation. Estimation

of glyph probabilities, which are also necessary for later de-

coding and transcription, is done by the DNN. MDCC then sets

up a loss function to improve this estimation. Correct prob-

abilities are not known since the training data only consists

of the input images and the corresponding truth label strings.

No information about the location or size of the characters is

included in the training data. The correct probabilities can be

approximated by constructing a CRF that encodes the truth

label string and relies on approximate inference to obtain

the correct probabilities. This is called the ‘alignment’ of

the truth label string to the two-dimensional DNN output.

Constructing the CRF is specified in the following Sections

II and III. The DNN parameters are then adapted by cal-

culating the multi-nomial cross-entropy loss of the estimated

and corrected probabilities, performing backpropagation and

gradient descent using one of the standard gradient descent

algorithms for neural networks. This training loop is repeated

until a satisfactory estimation of the probabilities is achieved

by the DNN.

This work improves the original MDCC by introducing 8-

instead of 4-neighborhood relations for alignment. This solves

difficult cases were text lines are aligned along a diagonal

in the pixel space. It also exchanges the potential functions
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Fig. 1. Overview of both training and transcription. Training is an Expectation-Maximization-style approach were first the DNN parameters are held constant
and the CRF alignment is updated, then the CRF alignment is held constant and the DNN parameters are updated.

from a Potts model for ones that are specifically designed for

handwritten text.

Decoding the two-dimensional probabilistic output from the

DNN is done for transcription. The decoding mechanism is

based on a horizontal scan-line that is initialized on the very

top of the two-dimensional output. It is then moved top-

to-bottom and left-to-right while alternating between visible

lines and line separators. Visible lines are decoded to text

lines while the scan line moves through them and newline

characters are added while moving through the line separators.

This transcribes a multi-line text from the two-dimensional

probabilities output estimated by the DNN. Please see [9] for

more information on the decoding mechanism.

The main body of this work focuses on the ideas and

theoretical aspects of MDCC. Comparison with a previous

variant of MDCC and the attention-based transcription method

[7] is done by an experiment and evaluation of error rates.

Section II discusses the structure of handwritten text and

how to derive the topology of the CRF used in MDCC

from it. Section III defines the CRF potential functions and

completes the definition of the CRF. Section IV discusses

the loss function for training a DNN using MDCC. Section

V gives a brief overview on why approximate inference is

necessary for MDCC. Section VI includes experimental results

for transcribing small multi-line samples from the IAM Offline

Handwriting DB. Section VII concludes this work with a brief

discussion.

II. TOPOLOGY

CRFs are undirected cyclic graphical models of multi-

variate probability distributions. As such we need to define the

topology of the graphical model in order to work with a CRF,

e.g. for inference. Nodes in the case of MDCC are ‘pixels’

of the DNN output and states the individual positions within

the truth label string for supervised training. We can use this

to infer the probabilities of individual ‘pixels’ belonging to

certain glyphs. The CRF in MDCC is constructed by defining

two separate graphs, a pixel graph and a label graph, and

then computing the graph tensor product of both as discussed

later in this section. Nodes of the pixel graph translate to the

nodes of the CRF and nodes of the label graph to the states of

the CRF. Both graphs are directed but directions are dropped

after calculating the graph tensor product and the resulting

CRF will be an undirected graph. This is possible since both

graphs define neighborhoods, which are undirected in nature,

and directions are only used for easier understanding of the

two graphs’ topologies.

Fig. 2. Example pixel graph for a DNN output of 3× 3 ‘pixels’ in size.

The topology of the pixel graph is rather simple: it is a

regular grid of nodes, each node s corresponding to one ‘pixel’

of the DNN output. As such the edges of the pixel graph are

one edge in each of the four directions of the directed graphs.

Figure 2 shows one such example pixel graph.

Defining the topology of the label graph requires some

thought about the structure of multi-line handwritten text. The

nodes of the label graph correspond to individual positions

within the truth label string. The truth label string contains

newline characters to separate lines. Edges of the label graph

still represent steps of one ‘pixel’ distance in one of the four

directions. The visual shape of glyphs and structure of the text

thus define the topology of the label graph.

We will use the term glyph for a visible/printable element

of the alphabet. Character denotes one specific instance of a
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Fig. 3. Possible patterns of the boundary between two text lines. First/Upper line in green, second/lower line in blue.

glyph. For example in ‘hello’ the glyph ‘l’ exists once in the

alphabet but the character ‘l’ occurs twice in the string.

The language and writing system in which the text is written

allows us to define some basic parameters for the structure of

the text. For English handwriting these would be that lines

are written from left to right and lines are ordered from top

to bottom.

Further parameters arise out of the requirements that the

decoding algorithm sets. We are free to define these parameters

ourselves since the decoding algorithm is part of MDCC, but

it must be ensured that these parameters are respected during

both training and decoding. We assume that there are more

‘pixels’ in the DNN output than the truth label is in length.

Repetition of lines and/or glyphs is thus necessary since all

‘pixels’ must belong to some position in the truth label string.

Otherwise said, the sum of state probabilities of the CRF must

sum to one per node. This means that lines and/or glyphs are

‘blobs’ in pixel space. Further we assume that these ‘blobs’

are continuous, e.g. a glyph ‘O’ is a continuous area and not

a circle with a dot of background in the middle. Modeling

glyphs any other way than ‘blobs’ would require knowledge

about the shape of glyphs and thus make it necessary to

model prototypical glyphs. MDCC avoids this by only aligning

characters by their location and size, not shape.

A special line separator is introduced to the alphabet. This

line separator must span from the left to the right borders. Its

occurrence means that the ‘pixels’ above and below belong

to two different lines. If two ‘pixels’ are not separated by a

line separator then they are assumed to belong to the same

line. We can further specify that two characters in the same

line can be distinguished if they belong to two different

glyphs. A glyph separator label is introduced to distinguish

between two adjacent characters that are the same glyph. An

example for this would be the string ‘hello’ which makes it

necessary to recognize the two ‘l’ glyphs as two different

characters. The solution is to introduce the glyph separator

within the glyph repetition: ‘helεlo’. The approach of adding

separators is proposed by CTC, but in a different way than

MDCC: CTC adds optional separators between all character

pairs and mandatory separators between character pairs of the

identical glyph. MDCC only adds mandatory separators and

omits optional ones.

Figure 3 shows some possible patterns of the boundary

between two text lines. Please note that these are examples

and the full multi-line text in pixel space is a combination

and repetition of these simple patterns. These simple patterns

already lead to some observations: in pixel space a horizontal

move to the right could lead to a change to both the previous

or the next line. This is because of the two directions in which

text lines can be slanted. Also a single pixel row can hold both

the first line, second line and then the first again. We should

not assume that one pixel row always corresponds to only one

text line or that the order of text lines in a pixel row follows

a strict linear order. On the other hand, a movement from top

to bottom in pixel space will always traverse the text lines in

strict ascending order.

Figure 4 contains some example patterns for the boundary

between two characters of the same text line. Again these

are examples that must be combined and repeated to contain

the full multi-line text in pixel space. These patterns support

similar observations as in text lines: horizontal movement

results in an ascending order of the characters whereas a

vertical movement can mean a jump to both the previous or

next character.

We can now continue to define the topology of the label

graph using this knowledge about the structure of the given

writing system. Each node xs of the label graph corresponds to

one text position in the truth label string. Label separators and

glyph separators are introduced where necessary. The rules for

introducing edges to the label graph are as follows, see Figure

5:

1) All characters as well as the glyph and label separators

can repeat themselves in all four directions. This intro-

duces four loops (four directions) at each node.

2) A transition to the next character in the same text line is

possible for horizontal right, vertical down and diagonal

down-right moves in pixel space.

3) Vertical and diagonal down-left moves in pixel space

allow a transition to the previous character of the same

text line.

4) A switch to the next text line is possible in all four

directions in pixel space.

5) A horizontal right movement allows the transition back

to the previous text line.
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Fig. 4. Possible patterns of the boundary between two characters within the same text line. First/Left character in green, second/right character in blue.

Fig. 5. Abstract label graph showing the transitions from one character to its
neighboring characters and lines. Solid directed arrows show actual edges in
the label graph. Dotted undirected lines indicate neighborhoods that must be
realized according to the described rules.

Figure 5 shows an abstracted label graph around one char-

acter. The outgoing edges from the character ‘L0 C0’ are

constructed using the above rule set. The missing edges are

indicated by dotted undirected edges and must be realized

while building the label graph.

The graph tensor product used in MDCC is restricted

by only allowing the product of edges that share the same

direction. In total there are four edge directions in the di-

rected graphs: horizontally to the right, vertically downwards,

diagonal down-left and diagonal down-right. This results in 8-

neighborhoods in the CRF when dropping the directions. Ac-

cording to the MDCC variant of the graph tensor product, an

edge (s, xs) ∼ (t, xt) exists in the CRF iff s ∼d t∧ xs ∼d xt
with d being the edge direction, s, t nodes in the pixel graph

and xs, xt nodes in the label graph. (s, xs) and (t, xt) are

node-state combinations in the resulting CRF. The meaning

of the edges in the two graphs is the answer to the following

question: when moving one ‘pixel’ in this direction, which

nodes are possible neighbors?

A CRF is defined by its node potential function and edge po-

tential function that define the ‘compatibility’ between nodes

and their states. The potential functions of a CRF may contain

structural zeros, potential values of exactly zero that disallow

the corresponding node-state combination completely. These

structural zeros allow us to think about the CRF first in terms

of graph topology were allowed node-state combinations and

edges have potential values greater than zero and disallowed

ones a potential value of exactly zero. Computing the graph

tensor product out of the described pixel and label graphs

produces the topology of the CRF. The actual node and

edge potential function will be defined in Section III, but the

topology already defines which potentials are greater than zero

and which are structural zeros.

Fig. 6. Example of a text line that is incorrectly aligned along a diagonal. The
correct label sequence is ‘C1 C2’ and not ‘C1 C2 C1 C2’ in this example.

The topology presented in this work is based on 8-

neighborhoods in the pixel grid instead of 4-neighborhoods as

used in the original MDCC publication [9]. This was inspired

by the observation that text lines along a diagonal could be

incorrectly aligned using 4-neighborhoods. One example for

this is shown in Figure 6 where the text line ‘C1 C2’ should be

aligned, but instead ‘C1 C2 C1 C2’ is occurring as a pattern.

This is solved by introducing diagonal dependencies into the

topology.

III. POTENTIAL FUNCTIONS

In Section II we have discussed the topology of the CRF

in use for MDCC. For building and using an actual CRF we

further need to define node and edge potential functions. These

define the ‘compatibility’ between nodes and states of the

CRF. In the MDCC case, the node potential function ψs(xs)
defines the compatibility between ‘pixel’ s of the DNN output

and position xs within the truth label string. Furthermore the

edge potential function ψs,t(xs, xt) defines the compatibility

between two neighboring ‘pixel’ s, t and two positions xs, xt
and as such controls the edges in the CRF.

The edge potential function ψs,t(xs, xt) is derived out of

the topology of the CRF. Structural zeros are modeled in the
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edge potential function and as such, ψs,t(xs, xt) = 0 iff no

edge (s, xs) ∼ (t, xt) exists in the CRF topology. ψs,t(xs, xt)
is positive otherwise.

The actual choice of the potential function values greater

than zero is more or less free depending on the problem at

hand. Greater values of the potential functions mean higher

compatibility. It has some benefits to choose exponential

functions in the form of ψs,t(xs, xt) = exp(...):

1) LBP computes repeated multiplications of the potential

function values for message passing. Computation in

log-space improves numerical stability and exponential

functions are easily integrated into a log-space imple-

mentation.

2) Choosing exponents greater than one for the potential

functions leads to a reliable convergence of beliefs in

LBP in our experience.

We can further make the following assumptions about

handwritten text:

1) A horizontal movement in pixel space will less likely

result in a change of text lines than staying within the

same text line.

2) A vertical movement in pixel space will more likely re-

sult in either continuing the same character or changing

the text line than changing the character within the same

text line.

Based on this we have chosen the following values for the

edge potential function ψs,t(xs, xt):

1) e1.5 if s, t are in the same pixel row and xs, xt are in

the same text line.

2) e1 if s, t are in the same pixel row and xs, xt are not

in the same text line.

3) e1.5 if s, t are not in the same pixel row and xs, xt are

either identical or not in the same text line.

4) e1 if s, t are not in the same pixel row and xs, xt are

different characters in the same text line.

The node potential function ψs(xs) also models structural

zeros. These occur whenever a truth label position xs cannot

occur in ‘pixel’ s. This is the case if such a combination of s,

xs would make it impossible to fit the remaining truth label

string. For example the character ‘e’ of ‘hello’ can never occur

in the leftmost pixel column since this retains no space for the

‘h’ character. This means ψs(xs) = 0 iff the s, xs combination

leads to an invalid configuration and ψs(xs) > 0 in all other

cases.

DNN training with MDCC is based on estimating the

probabilities of individual pixels of the input image belonging

to certain glyphs from the alphabet. This is what the DNN is

trained for in MDCC. The CRF in MDCC is used to include

the knowledge of the truth label string to correct the estimated

probabilities, set up a loss function and optimize the DNN

parameters. This means that over time the estimation by the

DNN is improving and MDCC integrates these improvements

in the CRF. This is why the CRF node potential function

respects the estimation by the DNN.

Again we choose exponential functions in the form of

ψs(xs) = exp(...) for the node potential function:

ψs(xs) = exp(k1 + k2 × FAs(xs) + k3 ×DNNs(xs)) (1)

Constants k1, k2 and k3 of Equation 1 are chosen to weight

the three influences in the node potential against each other. k1
is introduced to ensure that ψs(xs) > exp(1) for non structural

zeros and to improve the convergence of beliefs in LBP.

Function DNNs(xs) is the current estimation of the DNN

that s belongs to xs. The DNN actual estimates the probability

of a ‘pixel’ s belonging to a certain glyph g, whereas xs
is a position within the truth label string. As such we need

to introduce a mapping: DNNs(xs) = DNNs(g), g = S(xs)
with S being the truth label string.

Function FAs(xs) gives the probability of s belonging to xs
based on a two-dimensional Forced Alignment (FA) [16]. This

two-dimensional variant of FA assumes that all text lines are

of the same height in pixel space (±1 pixel) and that text lines

are separated by a line separator of exactly one pixel in height.

Furthermore all characters of all text lines are assumed to be

of the same width (again ±1 pixel). Using this information,

text lines and characters are then ordered top-to-bottom and

left-to-right. This results in a spatially uniform placement of

the characters and lines. To achieve smoothness at character

overlaps, only line separators are aligned with a probability

of one, all other characters probabilities are calculated by

a normal distribution with half a glyph width of standard

deviation.

We chose the following values for the three constants to

complete the node potential function: k1 = 1, k2 = 5 and

k3 = 10. This gives the most weight to the DNN estimation but

ensures a reliable alignment even at the beginning of training

or for erratic DNN estimations.

The CRF of MDCC is now defined in the form specified

by Equation 2:

P (C|DNN) =
1

Z(DNN)

∏

s

ψs(xs)
∏

t∈nbr s

ψs,t(xs, xt) (2)

Equation 2 gives the probability P (C|DNN) of a config-

uration C being a valid alignment of the truth label string

given the DNN estimation. In this case, xs and xt are

specific assignments of characters to ‘pixels’ defined by the

configuration C. Function Z is called Zustandssumme and is

the sum over all possible configurations:

Z(DNN) =
∑

C

∏

s

ψs(xs)
∏

t∈nbr s

ψs,t(xs, xt) (3)

We have modified the potential functions in this work as

compared to the original MDCC [9] to ensure that non-

zero potential values are always greater than exp(1). Also

edge potentials are not based on a Potts model anymore but

implement specific ideas about the structure of handwriting.

Node potentials were updated to stronger reflect the influence

of the DNN and FA. This was made necessary since in

larger pixel spaces the edge potentials seemed to have a too

strong influence on the result when compared with the node
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potentials. This then may result in an alignment that does not

reflect the DNN estimations of the character positions and

sizes.

IV. NETWORK TRAINING

Training of the DNN is implemented by estimating

DNNs(g) and correcting it using the described CRF, see

Sections II and III, to obtain the corrected probabilities

CRFs(g). Approximation of CRFs(xs) is done using LBP

in Sum-Product Mode and are also called Beliefs, which are

proportional to the actual probability of xs occurring in s:

CRFs(xs) ∝ Ps(xs).
LBP in sum-product mode on this CRF approximates the

mean probabilities of ‘pixel’ s belonging to a certain character

xs given the DNN estimation and under the condition that each

configuration C encodes the truth label string. See Equation

4 for this marginal probability. It is worth noting that LBP

and message passing in general does at no point explicitly

create any configuration C of the graphical model. Instead

the marginal probabilities are estimated without observing any

configuration.

CRFs(xs) ≈
1

|C|

∑

C:C(s)=xs

P (C|DNN) (4)

MDCC uses multi-nomial cross-entropy as its loss func-

tion L, see Equation 5. Corrected probabilities CRFs(g) =∑
xs:S(xs)=g CRFs(xs) are computed by summing up all truth

label positions that are the glyph in question. This is necessary

since the same glyph g may occur multiple times in the truth

label string S.

L = −
∑

s

∑

g

CRFs(g)× log(DNNs(g)) (5)

The derivative of the loss function L from Equation 5 is as

follows:
∂L

∂DNNs(g)
= −

CRFs(g)

DNNs(g)
(6)

The loss function L and its derivative are then applied to

train the DNN for MDCC. Note that CRFs(g) is held constant

during the update of the DNN weights in our EM-like training

procedure, thus we do not need an inner derivative of CRFs(g)
in Equation 6. After training the DNN will be able to perform

segmentation-free multi-line offline handwriting recognition.

A decoding function for producing a computer-processable

character string from the DNN estimation is necessary as

specified and discussed in [9].

V. COMPARISON WITH EXACT INFERENCE

LBP approximates marginal probabilities as specified in

Section IV. We would like to show that approximation of

these probabilities is the only computationally tractable way

of performing this style of training. The graphical model of

a multivariate probability distribution, here a CRF, includes

cycles. These cyclic dependencies make it impossible to

apply optimized algorithms such as Forward-Backward [17]

or non-loopy Message Passing [18]. One example inference

algorithm to calculate the exact marginal probabilities without

approximation is to enumerate all valid configurations C of

the cyclic graphical model. Exact inference in general cyclic

graphical models is known to be NP-hard [19] [20]. There

are chain-structured cyclic graphical models, e.g. alignment in

CTC, that can be separated into two directed acyclic models

that enable exact inference in polynomial time. Unfortunately

this chain-structure does not hold true for the CRF in MDCC,

which has a grid-structure.

The number of valid configurations for the string ‘aa\nbc’

in pixel grids of sizes 4x4, 5x4 (width x height), 5x5 and 6x5

are shown in Table I. We have stopped the enumeration of the

valid configurations within a 6x6 grid after several hours of

run time. Run time measurements using approximate inference

were continued for some larger pixel grid sizes. A grid size

of 100x100 was added to show that MDCC can be applied

to paragraph-sized outputs with reasonable run time. Time

measurements shown in Table I were performed on a 2.2 GHz

Intel Core i7-6560U.

Run time of LBP is dependent on the number of message

passing iterations that are required to converge to a stable

point. The convergence criteria used in this work is to check

the mean change in LBP messages from one iteration to

the next. LBP is stopped if this mean change falls below a

threshold of 3 × 10−6 at any iteration. Our experience with

MDCC is that 10 to 100 iterations of message passing are

enough in the described CRF.

The mean difference between approximated probabilities

CRFs(xs) and exact probabilities Ps(xs) for this example

in a 6x5 grid was 0.0407163 with a standard deviation of

0.0834019.

VI. RESULTS

We evaluated MDCC on the identical data set as used in

the original work [9]. Examples of 2 lines with 3 words each

were extracted from the IAM Offline Handwriting Database

[21]. The two lines were always two consecutive lines of the

source paragraph as well as the 3 words were consecutive in

those lines. This results in a data set of 11508 examples. One

such example is shown in Figure 7. Training was performed

on 80 percent of the data (9208 examples) while 10 percent

(1150 examples) each were used for validation and evaluation.

Fig. 7. Example input with 2 lines of 3 words each. Constructed from the
IAM Offline Handwriting DB.

The DNN topology for the experiment is a hybrid

CNN+LSTM and specified in Table II. Each convolutional

block consists of a 2D convolution with added padding to

keep the output the same size as the input. The convolution

is followed by batch normalization [22] and a leaky ReLU
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TABLE I
COMPARISON OF ENUMERATING ALL VALID CONFIGURATIONS AND APPROXIMATE INFERENCE USING LBP.

Pixel Grid Size Num. Configurations Run time Enumeration Run time LBP

4x4 3440 0.091s 0.002s

5x4 56480 1.360s 0.003s

5x5 3033992 82.035s 0.005s

6x5 74116576 2301s (38m) 0.007s

6x6 0.010s

10x10 0.047s

100x100 69.434s

[23] activation function. The feature maps of the DNN are

two dimensional at any layer. The bidirectional LSTM layers

are column-wise (vertical) or row-wise (horizontal) with each

column or row being treated independently from all others.

TABLE II
DEEP NEURAL NETWORK TOPOLOGY. THE COLLAPSE LAYER WAS ONLY

USED FOR PRE-TRAINING, NOT FOR MULTI-LINE TRAINING USING MDCC.

Layer Type Parameters

Input image Gray scale.

Conv. block Kernel size 5x5. 64 neurons.

Max. pooling Window size 3x3.

Conv. block Kernel size 5x5. 96 neurons.

Max. pooling Window size 3x3.

Conv. block Kernel size 5x5. 128 neurons.

Max. pooling Window size 2x2.

Conv. block Kernel size 5x5. 196 neurons.

Conv. block Kernel size 5x5. 256 neurons.

Vertical BLSTM 256 cells total. 128 cells per direction.

Horizontal BLSTM 256 cells total. 128 cells per direction.

Vertical BLSTM 256 cells total. 128 cells per direction.

Horizontal BLSTM 256 cells total. 128 cells per direction.

Conv. layer Kernel size 1x1. One neuron per glyph.

(Collapse layer) Column-wise summation.

Softmax

The DNN was pre-trained on IAMDB words using CTC.

Pre-training was for 10 epochs with a mini-batch size of 16

examples. Training using MDCC and the data set consisting

of examples of 2 text lines was started after these 10 epochs.

Mini-batch size for MDCC training was 4 examples. The

optimizer for both training phases was RMSProp [24] with

a learning rate of 0.001.

Error rates were measured in Character Error Rate (CER)

as specified in Equation 7. CER is the fraction of the Edit-

distance [25] [26] of the decoded string d and the truth string

t divided by the length of the truth string. The convergence of

CER during MDCC multi-line training is shown in Figure 8.

CER(d, t) =
Edit(d, t)

|t|
× 100 (7)

Error on the validation data set reached its minimum after

115 epochs at a CER of 6.00, while a CER of 0.59 was

measured on the training data set. CER on the independent

evaluation data set was 5.47 after 115 epochs. This is an

improvement over the CER of 10.4 as reported by [9] on the

identical data set. It also indicates a potential improvement

over a CER of 10.9 as reported by [7, p. 6] on a similar, but

not publicly available data set.

Fig. 8. Convergence rate of the DNN error while training for transcription
of 2 lines with 3 words each. First 10 epochs were pre-training using CTC.

PyTorch [27] was used to implement the described DNN and

training. PyTorch allows easy utilization of a NVIDIA GPU

for training. The DNN in this experiment was executed on a

NVIDIA GeForce GTX 1080 Ti. Both the CTC and MDCC

implementations are optimized for execution on a CPU which

made memory transfers between the main memory and GPU

memory necessary. An Intel Core i5-6500 with 3.2GHz was

used for calculating the CTC and MDCC loss during training.

Each epoch of MDCC training took approximately 58

minutes. This results in a speed of 3.4 examples per second

during training. Transcription speed for evaluation was 14.5

examples per second. The difference is due to the execution

of LBP for approximate inference during training.

Figures 9 and 10 show heat maps of glyph probabilities for

the example of Figure 7. Figure 9 shows glyph probabilities

for ’e’ and has nearly correct localization of the characters. It

also shows that the aligned characters are continuous areas, but

do not necessarily have to be of a rectangular shape. Figure

10 shows the glyph ’r’ that has two adjacent occurrences

which are separated by a glyph separator to distinguish the

two characters of the same glyph.

Fig. 9. Heat maps of DNN (left) and CRF (right) probabilities for glyph ’e’.
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Fig. 10. Heat maps of DNN (left) and CRF (right) probabilities for glyph
’r’.

VII. DISCUSSION

In this work we have discussed the structure of handwritten

text and how to model its properties with cyclic graphical

models in the form of Conditional Random Fields. We pro-

vided details on how to use this CRF to calculate an alignment

of multi-line text over two-dimensional images. This sets the

stage for training Deep Neural Networks for segmentation-

free multi-line offline handwriting recognition by applying an

approach similar to Connectionist Temporal Classification but

in two dimensions: first calculate the alignment of the truth

label string over the DNN output and then use this alignment

to set up a loss function for DNN training. MDCC thus

implements weakly supervised training of DNNs for multi-

line handwriting recognition.

We further believe that MDCC can serve as a framework

for application in higher-dimensional spaces as well. Problems

based on the classification of multiple objects (in this case

glyphs) in a multi-dimensional space can in theory be modeled

by MDCC. Necessary is the specification of the space in which

the alignment takes place, which in this case is a 2-dimensional

pixel grid but could also be a discrete 3- or 4-dimensional

space. Knowledge about the geometric relations between the

objects is also required, in the case of handwriting the writing

system on how to order lines and characters.

The experimental results of this work are an improvement

on the previous variant of MDCC on the same data set. Error

rates are competitive and show that MDCC can be used for

practical applications of offline handwriting recognition. We

believe the improved error rates are because of changing to

8- instead of 4-neighborhoods and adopting CRF potential

functions that are specific to handwritten text.

Next steps for applying MDCC are to transcribe whole para-

graphs of the IAM Offline Handwriting DB and to transcribe

industrial data.
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