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Abstract—In document analysis the availability of ground truth
data plays a crucial role for the success of a project. This is even
more true at the rise of new deep learning methods which heavily
rely on the availability of training data. But even for traditional,
hand crafted algorithms that are not trained on data, reliable
test data is important for the improvement and evaluation of the
methods.

Because ground truth acquisition is expensive and time con-
suming, semi-automatic methods are introduced which make
use of suggestions coming from document analysis systems. The
interaction between the human operator and the automatic
analysis algorithms is the key to speed up the process while
improving the quality of the data. The final confirmation of data
may always be done by the human operator.

This paper demonstrates a use case for acquisition of truth
data in a mail processing system. It shows why a new, extended
view on truth data is necessary in development and engineering
of such systems. An overview over the tool and the data
handling is given, the advantages in the workflow are shown,
and consequences for the construction of analysis algorithms are
discussed. It can be shown that the interplay between suggest
algorithms and human operator leads to very fast truth data
capturing. The surprising finding is the fact that if multiple
suggest algorithms circularly depend on data, they are especially
effective in terms of speed and accuracy.

I. INTRODUCTION

At Siemens Logistics GmbH, machines and systems for the

automatic handling and sorting of postal mail, parcels, cargo

and air flight baggage are developed. These systems rely on

the automatic identification, recognition and interpretation of

these items. Data acquisition is done by scanners and cameras

for still and video, but also other sensors like laser scanners

for barcodes or light curtains for object outline recording are

used.

From this data, information is extracted to process the

corresponding items, e.g. the destination address, handling

information, and item identification. Ground truth data is

necessary for algorithmic training, system tuning, evaluation

and test during development, but also to define acceptance

criteria for the customers.

To meet all these goals, ground truth data has not only to

be recorded for the properties on the system’s surface, but

also for the intermediate results of the implementation of the

system. These may be the standard algorithmic building steps

like foreground/background separation, region of interest de-

tection, image segmentation, raw text recognition, syntactical

tagging, etc. This list completely depends on the concrete

implementation and may change between projects and over

time. Therefore it is necessary to provide a truth data concept,

which can be extended to any type of document properties.

[1]

Additionally, the scope of truth data in this work goes

beyond that of many other document analysis systems and

includes structured semantic information. For mail and parcel

sorting applications, addresses and distribution codes are the

relevant data elements. These are dependent on the actual

address databases and coding rules, which must be considered

in truth data modeling.

The required amount of truth data has grown significantly

over the past years. Basically, there are two main reasons for

this: Given the improvements in recognition technology, error

rates well below one percent are common and expected. In

order to show the significance of accuracy measurements, an

appropriate amount of truth data has to be provided. Likewise,

with machine learning techniques emerging in many analysis

tasks, the need for more training data is given.

Given these needs, the creation of truth data plays an

increasing role in document recognition and analysis projects.

Customers request for tools and cost-effective solutions in

human supervised creation of truth data. A framework for

developing these solutions is presented in the following.

The truth data model is presented in section II. The truth

data capture process and toolkit architecture are outlined in

section III. As an example, the use case of letter recognition in

mail processing and the corresponding tool is shown in section

IV, alongside a set of suggesters in section V. Implementation

issues are discussed in section VI, followed by remarks on

evaluation and results in section VII. Observations made in

this project and an outlook to further work conclude this paper.

II. TRUTH DATA

Truth data has general properties which are explicitly mod-

eled in this work. Basic property of truth data is that it is pre-
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Fig. 1. Truth data extracted from German letter mail document. Data semantics on the left side (element, spec), content in the middle (location, refers,
content, alts), status on the right side (creator, date, confidence, status).

liminary and never complete. Preliminary, because correction

of truth data is a common process during the development of

recognition and analysis systems; never complete, because new

requirements during system development – external or internal

– create the need for new truth data elements. Considering this

transient aspect of truth data, truth data is modeled by atomic

items, with each having explicit references to related items, if

needed.

Saying this, the general truth data model is simply a

set of truth data items, each representing a single piece of

information only. Each item consists of:

1) Content - a single piece of information

2) Semantics - a specific name for item’s meaning

3) Status - info on truth data capture process

(1) The content is represented by specific classes. Common

examples for classes are Image, Polygon, Text, TextRange,

or Enumeration. The actual representation of the information

is defined by the class, e.g. an image may be represented

by a TIFF buffer. As the item’s information is “atomic”,

even closely connected data is modeled by separate items:

Image regions may be defined by a polygon, however the

extracted image buffer is a different item, because image

transformations may contain truth in its own right, e.g. noise

removal. However, as atomic information nevertheless has to

be complete, some truth items need additional references. This

especially holds for locations: An image location represented

by a polygon needs the reference to the image the polygon

points to.

The truth data model is similar to [2] which is mainly

focused on image data. Here, any kind of information may

be stored, especially text and syntactic labels, which plays an

important role in many projects. The model can be extended

to multi-image, video, audio and other sensor data.

(2) The semantics of the item is given by a unique identifier.

It consists of element names, e.g. “input”, “receiver”, “image”,

and an optional specifications, e.g. indices. By common pre-

fixes, the identifiers are implicitly structured in a tree hierar-

chy. Examples of prototypical identifiers in mail processing

applications are given in Fig. 2. The model is specified by

a schema which defines valid identifiers, their classes and

relationship. An example of truth data extracted from German

letter mail can be seen in Fig. 1.

/input.1/mailpiece_image
/receiver.1/location
/receiver.1/image
/receiver.1/line.1/location
/receiver.1/line.1/image
/receiver.1/elements.cty/location
/receiver.1/elements.str/location

Fig. 2. Subset of truth data items identifiers to illustrate the data model
structure. Truth data items are organized in a tree structure, which represent
semantic dependencies: Changes in parent elements invalidate child elements.
Element specifications introduce an additional hierarchical level, e.g. “line.1”,
“elements.cty”. Other relations, e.g. references to images in locations, are part
of the data content.

(3) Finally, the item’s status is crucial for the truth data

capturing process, which will be presented in the next section.

In this process, the following status information is used:

• Creator, either a user name or a suggestion algorithm id.

• Date of last change.

• Confirmation status: suggested–confirmed.

• Control status: ignore–use
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• Suggestion confidence.

Automatic suggestion is controlled by this status data. For

example, truth data suggestion is switched off for confirmed

data. In addition, truth data lifetime spans longer periods with

potentially multiple truthing sessions, so transparency of the

data capturing process is necessary. For reproducible usage,

truth data then also has to be under version control.

Note the similarity of the truth data model to classical

file systems: Identifiers correspond to file names, atomic

information to file content, their classes to MIME types, and

status information to file permissions. This makes the data

model generic enough for many use cases, while preserving

enough structure for steering the truth data capture process.

III. TRUTH DATA CAPTURE PROCESS

The process of truth data capture (“truthing”) is iterative on

two levels. On data set level, documents are edited multiple

times by various persons and algorithms, under various as-

pects, at different times. On document level, the truth items are

worked on in any order, processing the document iteratively.

This process of truthing a single document is sketched in

Figure 3.

Fig. 3. Truthing process: Starting from initial Truth Data, Suggesters generate
new truth data items. These are displayed to the operator by Editors and
may be confirmed or modified, thus updating the truth data items. After each
operation, suggesters are invoked again, until the operator decides to finish
the process an store the data.

The truthing process is a loop which iterates between

automatic suggestions and operator input, until the operator

decides to finish the loop and store the data. Based on operator

input, suggesters are able to provide better suggestions in

each iteration. While editors are allowed to change any truth

item, suggesters can only change those items which are not

confirmed.

In order to additionally assist the human operator, suggesters

provide confidences; these can be visualized in the editors

in order to steer the editing process while preserving the

operators’ autonomy. In the case of overall high confidence,

this even can be the recommendation to simply confirm all

truth items. In the case of already confirmed items, it can

indicate items that are confirmed but nevertheless wrong.

The process starts with either empty or existing truth data.

One reason for starting with non-empty truth data is existing

truth data from other sources which has to be revised. More

often, existing truth data has to be enriched with additional

truth data elements, or improved suggest algorithms are used

to revise the truth data.

While the suggester algorithms seem to correspond to a

standard recognition and analysis system, subtle differences

should be noted. While those systems generally are tuned to

generate minimal error at the cost of higher reject, suggesters

can use brute-force strategies at minimal risk, because errors

are corrected at low additional cost. This allows the cost-

and time-effective usage of generic recognition systems which

are not perfectly tuned to the respective task. Indeed, this

even improves the utility of created data, because testing the

shortcomings of one system is best done with truth data created

by a another system, thus making virtue out of necessity.

For editing, there are basically two strategies: In case of

a single fatal suggestion error, e.g. a missed text block, the

first strategy is to correct this error, allowing the suggesters

to provide correct dependent results in the next iteration.

This works in cases with clear unambiguous sequence of

computation. However, in many recognition tasks, there is

a mutual dependence on data elements, in some context

sometimes labeled “Sayre’s Knot”, e.g. character segmentation

and recognition. But it holds for many other analysis tasks, e.g.

text recognition and syntactic labelling, or syntactic labelling

and semantic assignment. Here, the second strategy is most

effective: Giving the decisive hint, thus improving the results

in a “virtuous circle”. This is the core improvement of the

framework presented in this work.

Unconfirmed truth data, which only has been suggested, can

be created by skipping the editor step, thus running suggesters

in batch mode. This way, big amounts of data can be processed

at limited cost. Regarding the increase of documents available,

this aspect is important. The data is useful for many tasks:

Filtered accordingly, it can be used for training of machine

learning algorithms, or as basis for selecting those documents

where manual truthing is worthwhile.

Regarding the outer document data set loop, several aspects

have to be considered. Documents have to be selected and

managed based on criteria from previous truthing steps, user

management improves data quality by multiple assignment of

tasks, and data version control has to be handled automatically.

IV. TRUTH DATA EDITORS

While, strictly speaking, suggesters are optional in the

presented work, an editor must exist for any truth element

that has to be captured in the specific task. The reason for this

is that any non-trivial suggester may fail for some documents.

Conversely, any standard truth editing system can be enhanced

by adding suggest algorithms.

The use case for the truth editors presented here is the

annotation of letter mail images with the receiver address. The

following truth data elements are captured:

• Receiver block location

• Receiver block image

• Receiver line locations

• Receiver line images
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Fig. 4. Truth editors, applied to German mail recognition project: Left side: On top selection of receiver address location, on bottom suggestion for script
type handwriting. Middle column: Line locations within the receiver address block, selection of address directory fields, and display of synthesized postal
company distribution codes. Right side: Editing of text and syntax label assignment, selection tree for address database records, and display of selected partial
records.

• Receiver text

• Receiver script type (handwriting/machine print)

• Receiver syntax tagging

• Receiver address records (database-specific)

• Receiver address fields

• Receiver distribution codes (customer-specific)

• Stamp locations

• Stamp images

• Barcode locations

• Barcode images

For each truth element, at least on editor must be provided.

In some cases, e.g. the selection of address database records

and fields, alternatives are provided for selection in the editor

programmatically. In other cases, data is generated determin-

istically, e.g. images are cut by given polygons. In these cases,

the task of the editor is to select and confirm only. Technically,

the functionality is implemented as “suggester” even though

being strictly deterministic.

A screenshot of the application editor is in Fig. 4.

V. TRUTH DATA SUGGESTERS

The suggestion step during truth processing as in Fig. 3

is performed by a set of atomic suggesters. Each atomic sug-

gester creates or modifies a subset of truth data elements given

another set of truth elements as input. Based on this input–

output relations, truth data elements form a graph which may

contain cycles. As discussed in section III, this appears to be

beneficial for the truthing process. However, for computation,

a sequence of computation has to be defined.

First there may be the notion of a “natural” sequence.

Given a set of S of |S| suggesters, a set T of |T | truth

data elements, and a subset T0 of initial truth elements. For

example, the initial element may be the document image. A

“natural” suggester sequence s1 . . . s|S| may be constructed by

induction as follows: For each timestep t = 1 . . . |S|, select one

suggester st from the remaining suggesters S \ {s1 . . . st−1},
whose mandatory input is contained in Tt−1, creating a new

set of truth items Tt. If multiple suggesters fulfill the condition,

choose one of these randomly; if no suggester fulfills the

condition, do so with all remaining suggesters.

Given this construction method, it is obvious that the

sequence is not deterministic. When each suggester takes all

truth data as input and changes it, the sequence is random.

However in general, the presented sequence is reasonable: For

a linear set of suggesters sn, each constructing truth tn from

input tn−1, the sequence is s1 . . . s|T | as expected.

For truth calculation, the sequence of suggester calculations

is determined in a similar way. Given existing truth data

(initial, or from the last editing step), the next suggester

st is chosen the following way: From the set of remaining

suggesters S \ {s1 . . . st−1} choose one whose input truth

elements are available and more recent than output elements.

For efficiency, check this condition in the natural order of

suggesters. Stop if no suggester fulfills the condition. If

suggesters are cyclic, the whole procedure is repeated one
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Fig. 5. Suggester structure: Yellow nodes are truth elements, green nodes are suggesters. Based on the mailpiece image (upper left), suggesters derive other
truth items. Cyclic dependencies are shown in red. Note that some truth elements (stamp location, on the left) have no source, but must be manually edited,
because no suggester exists (yet).

time.

Note the similarity to a make process in software builds.

In contrary to these, dependencies of artifacts – here truth

items – are cyclic. This poses no problem, because contrary

to software builds, artifacts are allowed to be incomplete, and

to iteratively influence and change each other. In interactive

document analysis applications, cyclic dependencies of algo-

rithms can be handled and are beneficial, because in many

cases they well suit the problem domain. They can also be used

for offline systems, as convergence properties play a minor role

given the “suggestion” character of recognition and analysis

tasks. Moreover, managing a set of possibly cyclic suggest

algorithms facilitates the engineering of document analysis

systems.

In this work, the following suggest algorithms have been

used:

• Text block and text line detection based on similar

methods as presented in [3].

• Image cutting and binarization. [4]

• Text recognition based on RNN/LSTM and CTC [5], and

using Tesseract [6].

• Script type recognition.

• Error tolerant address database access with Solr [7].

• Selection of address fields based on text and address

records.

• Syntactical tagging as presented in [8].

• Generation of mail company distribution codes.

Note that some dependencies of these suggesters are cyclic:

Address database access operates on text, address fields and

syntactical tagging, while syntactical tagging operates on

text and address fields. The complete suggester structure is

shown in Fig. 5. Further cyclic suggesters are envisaged: Text

recognition additionally based on address field selection may

improve recognition accuracy.

The choice of suggester implementation influences the qual-

ity and utility of truth data. Because in many cases, truth

data is ambiguous by nature, e.g. handwriting, segmentation,

interpretation; thus the result of truth data capturing is highly

dependent on suggestions, if provided. This creates the risk

of over-adaptation: Machine learning training may be less

robust, test results may be less relevant. That’s why it is useful

to apply “orthogonal” algorithms, i.e. those producing results

differently compared to the system to develop. Third-party and

general purpose software is appropriate; as truth data capture

mostly happens in early stages of system development, their

use is first choice anyway. If data acquisition and system

development happens in parallel, update of suggesters may

be useful.

VI. IMPLEMENTATION

Requirements for fast and cheap data acquisition are to

provide the data capturing process without installation. A

web application implements data and user management and

provides the truth editors as presented in section IV. Addition-

ally, a desktop application based on the Qt toolkit has been

provided for development and testing of suggesters. Suggesters

are REST based, similar to the REST services presented in

[9]. This facilitates integration of 3rd-party suggest software.

Truth data is represented in JSON format and persisted using

git and Cassandra database. For dataset batch processing,

tools for suggestion, import, export and evaluation of multiple

documents have been provided. Import and export are essential

because legacy data and subsequent tools for training and test

rely on proprietary data formats.

VII. EVALUATION AND RESULTS

The evaluation of the truth data acquisition process itself is

difficult, because the main aspect of truth data – correctness –

cannot be determined due to the missing definition: Which

data, acquired with different tools and algorithms, is the

correct one? For this type of evaluation, there simply is no

”gold standard”. However, other aspects can be evaluated:

Truth data acquisition costs, and suggestion accuracy.

Truth data acquisition costs can be measured using various

scales: User interaction, e.g. quantified in key strokes or mouse

clicks, or acquisition time, i.e. the average time users need

to finish document truthing. In both cases, usability aspects

and users’ capabilities play a role, so experiments have to

be conducted. Usability is influenced by data presentation,

interaction options, and workflow. In an early version of the

system [8], a speed-up of up to 75% compared to a base
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system without automatic suggestions has been shown. For

applications that allow the usage of data which has not been

manually confirmed, e.g. in machine learning, a speed-up

factor of 10 − 20 seems reasonable. This is based on the

assumption that no suggesters for the relevant data existed

before.

For completeness, the theoretical minimum number of user

interactions is defined for a any set of data, suggesters, and

editors, and could be evaluated. However, no attempts have

been made so far to perform this kind of evaluation.

Suggester quality has been measured for text recognition

and address database access. ”Correct” truth data had previ-

ously been captured manually. It has to be noted that quality

of this ”correct” truth data is not perfect, so there is room for

interpretation of results.

• For evaluation of text recognition, the average character

error rate has been calculated using Levenshtein distance,

ignoring case, but considering whitespace and special

characters. On a set of 20k German letter mail documents,

the receiver text has been suggested based on receiver

block location, image binarization, line finding and text

recognition. In comparison to manually typed text, 14.7%

character error has been measured. Closer inspection

of difference gave the following findings: In manually

transcribed text, German special characters have been

wrongly labelled, and optional lines (concerning address

syntax) have often been skipped, which accounts for

most errors, while in suggested text, whitespace and

punctuation are the main causes of errors.

• For evaluation of address database access, four suggester

methods have been compared during development. All

methods are based on Solr/Lucene [7] and represent steps

during development. A set of 100 German letter mail

documents has been manually labelled with database

records and corresponding tokens appearing in the ad-

dress text. Results are given in Table I. The percentage

of documents with correctly identified address tokens has

been counted. During development, accuracy has been

improved heavily. Closer inspection of manually labelled

data did not show errors there.

TABLE I
EVALUATION OF ADDRESS DATABASE ACCESS: PERCENTAGE OF

DOCUMENTS WITH CORRECTLY IDENTIFIED TOKENS.

City Street House Nr All tokens
# documents with token 93 79 79 100

Method 1 83% 33% 84% 28%
Method 2 97% 49% 96% 38%
Method 3 89% 76% 82% 59%
Method 4 99% 95% 95% 76%

During truth data capture and suggester evaluation, defi-

ciencies of existing truth data are detected. This is a general

concept while developing document analysis systems: Truth

data is never complete. However, for future evaluation, careful

tracking of truth data changes, using various suggesters and

manual editing, could give deeper insight into the truthing

process.

VIII. CONCLUSIONS

The usage of appropriate suggesters reduces the costs of

ground truth data capture considerably. By allowing suggesters

to introduce circular dependencies on the truth data they oper-

ate, the addition of new suggesters is easy. An algorithm has

been presented, which automatically integrates any suggester

working on the truth data. This way, sophisticated round-trip

reasoning is rendered possible. Cyclic suggest algorithms show

to be the key issue in speeding up truth data capturing, and

may resolve Sayre’s knot by imitation of human reasoning.

Integrating the suggesters into the presented semi-automatic,

interactive truthing process reduces the risk of a negative

feedback cycle. Instead, correctly chosen user input reduces

necessary interactions to a minimum.
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