
Multi-Dimensional Connectionist Classification:

Reading Text in One Step

Martin Schall∗†

Email: martin.schall@htwg-konstanz.de
∗Institute for Optical Systems

University of Applied Sciences

Konstanz, Germany

Marc-Peter Schambach†

Email: marc-peter.schambach@siemens.com
†Siemens Postal, Parcel &

Airport Logistics GmbH

Konstanz, Germany

Matthias O. Franz

Email: mfranz@htwg-konstanz.de

Institute for Optical Systems

University of Applied Sciences

Konstanz, Germany

Abstract—Offline handwriting recognition systems often use
LSTM networks, trained with line- or word-images. Multi-
line text makes it necessary to use segmentation to explicitly
obtain these images. Skewed, curved, overlapping, incorrectly
written text, or noise can lead to errors during segmentation
of multi-line text and reduces the overall recognition capacity
of the system. Last year has seen the introduction of deep
learning methods capable of segmentation-free recognition of
whole paragraphs. Our method uses Conditional Random Fields
to represent text and align it with the network output to calculate
a loss function for training. Experiments are promising and show
that the technique is capable of training a LSTM multi-line text
recognition system.

I. INTRODUCTION

Current state-of-the-art systems for segmentation-free line-

wise text recognition use Multi-Dimensional Long Short Term

Memory (MDLSTM) networks [1] [2] trained with the Con-

nectionist Temporal Classification (CTC) loss function [3].

Recognition systems that employ these techniques have shown

high recognition rates for Latin handwritten text. CTC allows

for the training of recurrent neural networks (RNNs) that

recognize whole text lines without a prior segmentation into

individual characters.

First systems [4] [5] capable of recognizing whole para-

graphs without prior segmentation into text lines or characters

were introduced recently. These techniques are based on three

neural networks: an encoder network organized as a hierarchi-

cal subsampling network, followed by an attention network

and a transcription network. The model uses the CTC loss

function for recognition of multi-line texts while the attention

mechanism segments the individual lines and brings them into

correct sequential order. This requires repeated passes through

the networks amount to a higher run-time for longer texts.

We propose to use a single hierarchical subsampling net-

work with MDLSTM layers for end-to-end transcription of

multi-line text from an image to a probabilistic classifier

output, followed by an algorithmic decoding mechanism to

obtain a nominal string of the transcription. Our approach

uses Conditional Random Fields to train the neural network

on this task. In contrast to the previously proposed methods

[4] [5], our method transcribes multi-line text from an image

in a single forward pass through a neural network only. This

results in a low run-time of the text recognition system.

The proposed method for text alignment, network training

and decoding avoids the typical problems during line segmen-

tation caused by particularly skewed, curved or overlapping

text lines. In our approach we train MDLSTM networks for

a combined recognition of text lines and transcription of

characters in one step. This is a step-up of MDLSTM networks

that can handle input of multiple (variable sized) dimensions,

but need to be forcefully collapsed to one dimension for CTC

training.

We call our method of combining a MDLSTM network with

a CRF-based loss function the “Multi-Dimensional Connec-

tionist Classification” (MDCC). MDCC is based on construct-

ing an undirected and cyclic graphical model and approximate

inference on it.

This paper is structured as follows: Section II describes the

problem our proposed method tackles. Section III gives details

of the proposed text alignment and loss function. Decoding

of the probabilistic network output is described in Section

IV. Sections V and VI describe experiments and results. We

conclude the work by a discussion in Section VII.

II. MULTI-LINE TEXT RECOGNITION

Modern text recognition systems are often implemented by

either processing each line without further segmentation, e.g.

using a neural network trained with CTC, or following up

with another segmentation step to retrieve fixed size character

images for recognition. Systems employing line segmentation

are prone to errors when processing text with skewed, curved

or overlapping lines. Images of incorrectly segmented lines

may contain cropped or distorted text lines and reduce the

capacity of the recognition system to correctly transcribe

text. The proposed method avoids this by leaving out the

segmentation step. The text is transcribed from the whole

image in one pass through the RNN.

Figure 1 shows a rough overview of the evolution of text

recognition systems. Current systems employ one or two seg-

mentation steps to break down the image into individual lines,

words or characters. We propose to omit these segmentation

steps and recognize the text from the whole image.

Our proposed method tackles the following problem: we

assume a training set (X,Ytext) consisting of two-dimensional

grayscale images X with multiple text lines, e.g. Figure 2, and

Fig. 1. Evolution of text recognition systems.

Fig. 2. Example image from the data set.

with transcribed text Ytext per image. The text recognition sys-

tem is a MDLSTM hierarchical subsampling network trained

in a supervised fashion. In contrast to previous work [6], our

network does not require collapsing of the network prediction

into a one-dimensional sequence. Since each x ∈ X is a

two-dimensional image and the network output is not forcibly

collapsed, each network prediction yrnn = RNN(x,W) is

a set of pixel-wise two-dimensional probability distributions.

W is the set of weight and bias parameters of the RNN.

yrnn contains one probability distribution per symbol of the

output alphabet. Since symbols are mutually exclusive at the

same spatial position, a pixel-wise Softmax function is applied.

yrnn estimates the probability of a given pixel belonging to a

specific symbol from the output alphabet.

Before aligning the text ytext over the RNN output yrnn, we

transform the text ytext to a label sequence l by the following

rules:

• Symbols ⋆ map to their according label g⋆.

• Multiple adjacent occurrences of the same label g⋆ are

separated by a glyph separator ǫg .

• Each line is started and ended with a single whitespace

label g⊔.

• Line separators ǫl are between each two lines, before the

first and after the last line.

An example multi-line text “aa\nbc” maps to the sequence

l = (ǫl, g⊔, ga, ǫg, ga, g⊔, ǫl, g⊔, gb, gc, g⊔, ǫl) with length |l| =
12. g⋆ denote labels for visible symbols ⋆ and ǫ⋆ denote

invisible separators. We introduce two additional separators

ǫl and ǫg into the neural network model, increasing the size

of the output alphabet learned by the RNN by two. We will

refer to the size of the output alphabet by |g|, which includes

the two additional separators.

We use the following convention throughout the paper:

• ytext for the truth text of one sample.

• l of length |l| for the label sequence representing ytext.

• yrnn for the probabilistic RNN output.

• yalign for the alignment of truth text ytext over the pixel

space of yrnn.

• g of size |g| for the output alphabet that is recognized by

the RNN.

• s for pixels in the RNN output, each s being (x,y)-

coordinates.

• xs for indices into sequence l.

III. CONDITIONAL RANDOM FIELD ALIGNMENT

Conditional Random Fields (CRFs) [7] are a generalization

of Markov Random Fields (MRFs) [8] [9, p. 663] and as such

undirected cyclic graphical models of multi-variate probability

distributions. In contrast to MRFs, CRFs allow for condition-

ing of the probability distribution on an external set of features.

CRF models are topologically constructed as a graph of nodes

and undirected edges with the edges defining the neighborhood

relations between the nodes. The proposed method applies

discrete CRFs where each node has a probability vector of

mutually exclusive labelings.

CRFs are defined by their potential functions, strictly posi-

tive functions that define the compatibility of a field configu-

ration with the underlying model. Node potential functions

model the a-priori compatibility ψs(xs) of a specific label

xs to a node s. Edge potentials accordingly define the com-

patibility ψs,t(xs, xt) between two labelings xs, xt in their

nodes s and t. Note that this work considers only CRFs with

a maximum clique size of two.

We do inference on the CRF based on Loopy Belief

Propagation (LBP) [10] [9, p. 769] [11], a standard method

using in image processing. Belief propagation is a message

passing algorithm for inference in graphical probabilistic

models. Belief propagation was designed for acyclic models,

but it can iteratively be applied to cyclic models and it

shows convergence to the correct solution also in this case.

This variant of belief propagation is named LBP. Beliefs are

proportional to the probabilities of label xs occurring in node

s: bs(xs) ∝ ps(xs).
MDCC aligns the known truth text to the probabilistic RNN

output by using LBP inference on a CRF. MDCC defines

the node potential ψs(xs) and edge potential ψs,t(xs, xt)
functions for this task. The inferred probabilities will then be

used to train the RNN in a supervised fashion. Defining the

graph topology of the CRF is the first step towards this goal.

We separate this into two parts, defining the CRF nodes and

defining the CRF labels.

MDCC uses a grid-structured graph for representing the

pixel space. Each node in the CRF represents one pixel of the

RNN output and is connected to its four direct neighbors. We

need to differentiate between geometric horizontal and vertical

edges in pixel space to allow for a correct text alignment in

later steps. We later use solid lines to represent horizontal

edges and dotted lines for vertical edges.

Figure 3 displays the graphic representation of the truth

text. Again, solid lines represent horizontal moves in the pixel

space and dotted lines are vertical moves. Each node of the

graph represents a specific position within the truth text. If

the same symbol occurs multiple times in the text, it will

translate to multiple nodes. Connecting two text positions in

Fig. 3. Text representation for the CRF. Each node in this graph is one node
labeling xs in the CRF. Solid and dotted lines again represent horizontal
and vertical transitions in pixel space. The encoded text is the example l =
(ǫl, g⊔, ga, ǫg , ga, g⊔, ǫl, g⊔, gb, gc, g⊔, ǫl) from Section II.

this graph means that those are allowed neighbors in pixel

space. All symbols, with the exception of the line separator ǫl
can be repeated in both horizontal and vertical direction. Line

separators may only be one pixel in height. Adjacent symbols

and lines may be connected in both horizontal and vertical

directions to allow for slanted or curved text.

The two graphs of the pixel grid and truth text in Figure

3 simplify the construction of the CRF model by modeling

pixel grid and text separately. The CRF topology is obtained

by calculating the graph tensor product of the two graphs.

Nodes from the pixel grid translate to CRF nodes s and nodes

from the text graph to labels xs of these CRF nodes s. We

use ∼h for denoting neighboring nodes in horizontal direction

and ∼v in vertical direction. CRFs have only one type ∼ of

edge. An edge (s, xs) ∼ (t, xt) is added to the CRF iff s ∼h

t ∧ xs ∼h xt or s ∼v t ∧ xs ∼v xt.

MDCC restricts the graph tensor product by further appli-

cation of the following rules to the relation ∼:

1) Edges may only be added to the CRF if their orientation

(horizontal, vertical) is the same in the pixel and text

graphs. This is expressed in the two edge types ∼h and

∼v .

2) Only edges that still allow enough pixel space for the

symbols and lines to the left, right, top and bottom of

the current pixel may be added to the CRF. The truth

text must not be truncated. For example the h of hello

cannot occur in the four rightmost pixels because the

remaining symbols would then not fit in.

3) An exception to rule 2 are leading and trailing whites-

pace symbols g⊔ of each line, as well as the first and

last line separator ǫl. These symbols are optional and the

first visible symbol of the truth text may occur in the

leftmost, rightmost, top or bottom pixel row or column.

We use a Potts model [9, p. 673] as the basis for our CRF

and modify it. Edge potentials ψs,t(xs, xt) are defined by a

constant matrix of the size |l| × |l|, in our example a 12× 12
matrix for the 12 nodes in Figure 3. The diagonal of the matrix

represents the same text position (CRF labels xs and xt) in

two neighboring pixels (CRF nodes s and t) and favors these

over movements in the text in the off-diagonals of the matrix

if w > 0.

ψs,t(xs, xt) =

ew e0 · · · e0

e0 ew · · · e0

...
...

. . .
...

e0 e0 · · · ew

(1)

Equation 1 is the template for the actual edge potential,

which is different for each combination of nodes s and t

because of structural zeros. Values of the matrix are set to

exactly zero if the text positions xs and xt are not neighbors

in nodes s and t according to the graph tensor product and

above described ruleset. An edge potential ψs,t(xs, xt) = 0
effectively removes the edge from the CRF. Structural zeros

allow to create a CRF that only calculates alignments for the

given truth text and no variants or a truncation of it.

The weights are constant w = 1.44. The Potts model shows

a phase transition behavior when modifying the weights w,

as w < 1.44 results in many small segments, w > 1.44
in few large segments and w = 1.44 in a mixture of small

and large segments. This is a general behavior [9, p. 673] of

the Potts model and not specific to MDCC. Since symbols

have different shapes and sizes, we chose to use the value

of the phase transition and thus a mixture of small and large

segments.

The node potentials ψs(xs|yrnn, ytext) define the compati-

bility between a text position xs and the pixel s in the CRF

model. It is dependent on the probabilities estimated by the

RNN and favors text alignments for positions with a high RNN

output. We take a two-dimensional Forced Alignment FA [12]

yfa(s, lxs
) into account with a small factor of k1, as well as a

constant of k2. Equation 2 details the node potential function

that we used. FA defines probabilities yfa(s, lxs
) by placing

the truth text in identical symbol widths and line heights in

the pixel grid.

ψs(xs|yrnn, ytext) = ek1×yfa(s,lxs
)+yrnn(s,lxs

)+k2 (2)

We chose values k1 = 0.25 and k2 = 0.1 for this work.

This helps the initial alignment in the beginning of training

but still allows a smooth transition to put more trust on the

RNN output as its prediction gets more reliable. Text positions

xs in node s that violate the above ruleset, e.g. second text

line in the top pixel row, are set to a node potential of zero.

Alignment of the truth text over the RNN pixels is approx-

imated by running LBP on the described CRF model. We

normalize the beliefs to
∑

xs

bs(xs) = 1, ∀s and treat them

like probabilities.

Figure 4 shows one alignment for our example text from

Figure 3 to the RNN pixels. Please note that this is only one

possible alignment, as e.g. the top ga could also be a line

separator ǫl. The number of alignments increases exponentially

for larger pixel spaces. Each alignment yields different beliefs

bs(xs) for the text positions xs in pixels s and LBP in sum-

product mode calculates the mean over all alignments.

Fig. 4. One example alignment of the text of Figure 3 over the CRF nodes
and thus RNN pixels.

LBP [9, p. 770] in sum-product mode can be seen as a

generalization of the Forward-Backward algorithm [13]. The

Forward-Backward algorithm infers probabilities in an acyclic

directed graphical model by recursively passing messages

along its edges. Messages are the product of the source node

beliefs and the edge transition probability towards the target

node. Incoming messages of a node are summed up. This

is also called Belief Propagation because messages are the

beliefs of the probability state of neighboring nodes. Mes-

sage passing is repeated in forward and backward directions.

Normalization of the beliefs per node will yield the exact

probabilities. Inference in a tree-structure would start at the

root node, pass messages towards the leaf nodes and then

backwards again to the root node. LBP generalizes on this

concept by repeatedly applying message passing to a cyclic

graphical model until the beliefs have converged to a stable

state.

Messages in LBP are the product of the source node

belief bs(xs), its node potential ψs(xs|yrnn, ytext) and the

edge potential ψs,t(xs, xt) towards the target node. Incoming

messages are again summed up. Each iteration of LBP is the

process of sending out every message in the CRF exactly once.

Figure 5 shows message passing in LBP.

Fig. 5. Collecting (blue) and sending out (red) messages in LBP. This is
repeated for all nodes and until convergence of beliefs.

LBP is an iterative algorithm and as such needs criteria for

termination. Useful approaches are to check for the conver-

gence of the passed messages or limiting the total number

of iterations. We simply terminated LBP after exactly 75

iterations. This was enough to lead to a reliable result in our

experiments, but other use cases may need a larger number

of iterations. Convergence of the beliefs cannot be guaranteed

for general graphs, but we applied several enhancements to

increase the chances of convergence:

• Random shuffling of the order in which messages are

processed. This helps both convergence and breaking

symmetries in the alignment, such as always large seg-

ments in the top left corner.

• Asynchronous updates: using incoming message values

from the current iteration instead of the previous one if

they already have been updated.

• Normalizing incoming messages per node after each

iteration.

For training the RNN, summing up of beliefs bs(xs) is

necessary since xs are indices in l, which is a different set to

g because of multiple occurrences of the same symbol within

the sequence. We sum up all beliefs per symbol g, given that it

is contained in the truth sequence l, to obtain the probabilities

of a symbol occurring in a given pixel:

yalign(s, g) =
∑

xs,l(xs)=g

bs(xs) (3)

Both yrnn and yalign are now of the same structure: two-

dimensional probability distributions for each of the symbols

of the output alphabet. yalign contains the target probabilities

of a specific pixel belonging to a specific symbol and yrnn
the according network estimate. The actual loss function

for supervised training of the RNN is a multinomial cross

entropy loss. The general form of the cross entropy loss is

L = −
∑

i ti × ln(oi) with the target probabilities ti and

network output oi. We substitute yalign and yrnn for the

proposed loss function in Equation 4, with its derivative in

Equation 5.

L = −
∑

s

∑

g

yalign(s, g)× ln(yrnn(s, g)) (4)

∂L

∂yrnn(s, g)
=

−yalign(s, g)

yrnn(s, g)
(5)

IV. DECODING

The previous Sections II and III describe the text align-

ment and loss function for training the RNN for multi-

line text recognition. The network estimates a probability

prediction yrnn for a given multi-line document image. The

predictions have two spatial dimensions and |g| pixel-wise

mutually exclusive probabilities for each of the symbols in the

output alphabet. The text recognition system uses a decoding

algorithm to obtain a symbol sequence from this probabilistic

classifier.

We use a scan line for decoding the network output. The

scan line extends over the whole width of the output and moves

from top to bottom. Figure 6 shows our example with the

current and next state of the scan line in solid lines. The scan

line is not restricted to a straight line, but is allowed to jump

Fig. 6. Decoding procedure for the the example from Figure 4.

in the vertical dimension. This corresponds to diagonal lines

from top-left to bottom-right or bottom-left to top-right.

The scan line moves vertically, alternating between line

separators and visible text lines. Text lines are decoded while

the scan line moves through them. Individual text text lines are

obtained by moving the scan line through them, summing up

glyph probabilities per column and then decoding these sum

probabilities. Decoding of probabilities to sequences can be

done by either Best Path Decoding or Prefix Search Decoding

as described in [3]. This generates one sequence of symbols

per text line. Moving the scan line through a visible text line

is depicted by the time steps t = 1 through t = 5. In our

example, it will read the sequence (ga, ǫg, ga, ga, g⊔) and move

the state of the scan line to the line separators ǫl. Text lines

are decoded to a human-readable string by removing adjacent

duplicates from the sequence, followed by removing separators

ǫg . The example text line is decoded to the string “aa ”. After

decoding a visible text line, the scan line moves through a

stripe of line separators ǫl and adds a newline character to the

decoded text. This process of moving the scan-line vertically

is repeated until it moved through the complete output. The

RNN prediction is then fully decoded to a readable string.

V. NEURAL NETWORK TRAINING

The neural networks in our experiments are hierarchical

subsampling MDLSTM network with the topology and param-

eters detailed in Table I. We also conducted experiments with

other layer sizes and subsampling windows, but the reported

configuration has shown good and most reliable results.

MDLSTM layers are a stack of four two-dimensional LSTM

layers, one per scan direction over the two spatial dimensions.

MDLSTM layers contain peephole connections from the inter-

nal cell state to the gates. They have bias values for both the

cell state and gates. The locally fully connected feedforward

layers do not contain bias values, except for the last one. The

described neural network contains a total of 978748 trainable

parameters.

Weights were initialized by drawing from a uniform random

distribution with a value range from −0.1 to +0.1. Bias values

were initialized to zero. Optimization of the parameters has

TABLE I
NETWORK TOPOLOGY FOR THE CONDUCTED EXPERIMENTS.

Layer type Parameters

Image input 8-bit grayscale, 300dpi

Subsampling Window 3x3, stride 3x3

MDLSTM 8 cells per direction, tanh activation

Subsampling Window 2x2, stride 2x2

Feedforward 64 neurons, no bias, tanh activation

MDLSTM 44 cells per direction, tanh activation

Subsampling Window 3x3, stride 3x3

Feedforward 172 neurons, no bias, tanh activation

MDLSTM 80 cells per direction, tanh activation

Feedforward |g| neurons, with bias, linear activation

Softmax Pixel-wise Softmax activation function

been done using mini-batches of size 32 and RMSProp [14]

with learning rate µ = 0.001, dampening factor ǫ = 1e−3 and

decay rate p = 0.95.

Training of the neural network was initiated by pre-training

on single-word IAMDB data using CTC [3]. The collapsing

layer and the last feedforward layer were removed after pre-

training and a new randomly initialized feedforward layer

added for multi-line training. Only this new layer was trained

at first until no further reduction of error could be measured.

We trained the whole network after this pre-training phase

using the described CRF alignment for multi-line training.

The network error was measured in Character Error Rate

(CER). CER measures the ratio of the Edit distance [15]

between the transcribed text and the truth text in relation to

the length of the truth text. Lines are separated by one newline

character for multi-line texts.

CER(yrnn, ytext) =
100× Edit(Decode(yrnn), ytext)

|ytext|
(6)

VI. RESULTS

We conducted experiments on a data set extracted from the

IAM offline handwriting database [16]. Each sample of the

data set consists of 2 text lines with 3 words each. Words and

lines were used in order in which they appear on the pages.

Only words that were marked as ok were used. In total 11508

samples are in the data set, one is displayed in Figure 2. 5

percent were used for each of the validation and evaluation

sets during training and evaluation.

In our experiment, CTC on the IAM word-images was used

as pre-training until the error rate did not further improve

on the validation set. CRF alignment and loss function to-

gether with the described multi-line data were used after this.

Convergence rate on the training and validation sets over all

training epochs is shown in Figure 7. Best CER were 7.15%
on training, 11.5% on validation and 11.5% on evaluation data

sets after 93 epochs of training and using Best Path Decoding

[3]. CER on the evaluation set was reduced to 10.4% by using

Prefix Search Decoding [3].

This is an improvement over the 10.9% CER reported by

Bluche et al. [4, p. 6] on a similar data set. Our method takes

553ms for transcribing one sample on an Intel i7-6560U at

Fig. 7. Convergence rate of CER on the training (red) and validation (blue)
sets. Ends of pre-training phases after 20 and 39 epochs are marked by the
vertical lines.

2.2GHz or 506ms on an Intel Xeon E5-2640 at 2.4GHz. No

multi-threading was used for runtime measurements and the

network implementation is CPU based with AVX2 as a vector

extension.

Fig. 8. Left to right: RNN prediction, CRF alignment and error signal for
the symbol a after 93 epochs.

Figure 8 show the RNN prediction, CRF alignment and error

signal for the symbol a from Figure 2 after 93 epochs of

training. The first and second columns show heat maps of the

probabilities calculated by the RNN and CRF alignment. To

show these probabilities in context, the heat maps are partially

shown for high probabilities and then superimposed over the

input image. The third column shows a complete heat map of

the partial derivative of the loss function.

MDCC trains the RNN for producing the correct sequence

of glyphs in order to decode the correct text. Localization of

individual glyphs is not necessarily correct, as can be seen in

Figure 8 were predictions of a and alignments are spatially

higher than the actual characters in the image. The reported

CER shows that localization information is not necessary for

transcription using MDCC.

VII. DISCUSSION

We introduced MDCC, a method for training a RNN for

segmentation-free multi-line offline text recognition by using

pre-training followed by a switch to a CRF text alignment and

loss function. No explicit segmentation of lines or characters

is utilized in this work. In contrast to other work [4] does our

method only need a single forward pass through a MDLSTM

network for transcription of a multi-line text. This makes

MDCC suitable, depending on the size of the network and

available computing resources, for real-time applications. We

also propose a mechanism based on a horizontal scan-line

for decoding the probabilistic network output to a multi-

line character string. MDCC shows a lower CER than the

previously published methods.

As other work with CRFs in the field of computer vision

show, CRFs are capable of defining complex dependencies in

pixel space while allowing approximate inference. This could

allow for training RNNs for the recognition of complex text

layouts in the future. MDCC can possibly be adapted to other

weakly supervised problems, e.g. in three or four dimensional

space, if ground truth information can be encoded in a CRF.

To the authors knowledge, MDCC is the first method for

recognition of multi-line texts in a single pass through a neural

network.

ACKNOWLEDGMENT

The authors would like to thank the Siemens Postal, Par-

cel & Airport Logistics GmbH for funding this work and

providing computer hardware for carrying out the described

experiments.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory.” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[2] A. Graves, S. Fernandez, and J. Schmidhuber, “Multi-Dimensional

Recurrent Neural Networks,” IDSIA/USI-SUPSI, Tech. Rep., 2007.
[3] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist

Temporal Classification : Labelling Unsegmented Sequence Data with
Recurrent Neural Networks,” in Proceedings of the 23rd international

conference on Machine Learning. ACM Press, 2006, pp. 369–376.
[4] T. Bluche and R. Messina, “Scan, Attend and Read: End-to-End

Handwritten Paragraph Recognition with MDLSTM Attention,” pp.
1–10, 2016. [Online]. Available: http://arxiv.org/abs/1604.03286

[5] T. Bluche, “Joint Line Segmentation and Transcription for End-to-End
Handwritten Paragraph Recognition,” in NIPS 2016: Neural Information

Processing Systems, 2016.
[6] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and

J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.
[7] J. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random

fields: Probabilistic models for segmenting and labeling sequence data,”
ICML ’01 Proceedings of the Eighteenth International Conference on

Machine Learning, vol. 8, no. June, pp. 282–289, 2001.
[8] J. Pearl, “Probabilistic Reasoning in Intelligent Systems,” p. 552, 1988.
[9] K. P. Murphy, Machine learning: a probabilistic perspective (adaptive

computation and machine learning series). MIT Press, 2012.
[10] K. Murphy, Y. Weiss, and M. Jordan, “Loopy-belief Propagation for

Approximate Inference: An Empirical Study,” 15, pp. 467–475, 1999.
[11] V. Martin, J. Lasgouttes, and C. Furtlehner, “The Role of Normalization

in the Belief Propagation Algorithm,” arXiv preprint arXiv:1101.4170,
pp. 1–27, 2011. [Online]. Available: http://arxiv.org/abs/1101.4170

[12] M.-P. Schambach and S. F. Rashid, “Stabilize sequence learning with
recurrent neural networks by forced alignment,” in Proceedings of

the International Conference on Document Analysis and Recognition,

ICDAR, 2013, pp. 1270–1274.
[13] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[14] Y. N. Dauphin, J. Chung, and Y. Bengio, “RMSProp and equilibrated
adaptive learning rates for non-convex optimization,” Tech. Rep., 2014.

[15] R. A. Wagner and M. J. Fischer, “The String-to-String Correction
Problem,” Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.

[16] U. V. Marti and H. Bunke, “The IAM-database: An English sentence
database for offline handwriting recognition,” International Journal on

Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2003.

