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Abstract—Algorithms for calculating the string edit distance
are used in e.g. information retrieval and document analysis
systems or for evaluation of text recognizers. Text recognition
based on CTC-trained LSTM networks includes a decoding
step to produce a string, possibly using a language model, and
evaluation using the string edit distance. The decoded string can
further be used as a query for database search, e.g. in document
retrieval. We propose to closely integrate dictionary search with
text recognition to train both combined in a continuous fashion.
This work shows that LSTM networks are capable of calculating
the string edit distance while allowing for an exchangeable
dictionary to separate learned algorithm from data. This could be
a step towards integrating text recognition and dictionary search
in one deep network.

I. INTRODUCTION

The string edit distance [1] [2] defines a metric of similarity

of two strings. It is the minimum number of character inser-

tion, deletion or replacement operations to transform one string

into the other. Information retrieval and document analysis

systems use the edit distance for e.g. document retrieval or

dictionary search. It is also used for evaluating text recognizers

by using it as a measure of the character error rate. Use

cases are e.g. the search for address elements in postal and

parcel processing, the localization of genome sub-sequences

or keyword search in web search engines. Optimized index

structures can be used when no two arbitrary strings are

compared but a query string with a dictionary of reference

strings.

Long Short Term Memory (LSTM) networks [3] [4] trained

with Connectionist Temporal Classification (CTC) [5] [6] pro-

duce a sequence of character probabilities while transcribing

text from images. This probabilistic output is further decoded

to one or more strings. Decoded strings are used for evaluation

of the network or in following application steps. A language

model can be used to improve decoding of the network output.

Transcription, decoding and dictionary search are often seen

as separate steps. We propose to integrate these three steps into

one deep LSTM network. This work is a step in this direction

by showing that LSTM network can learn to calculate the

string edit distance of a one-hot coded string and a dictionary

of strings. A one-hot coding of strings is very similar to

the probabilistic output of a CTC-trained LSTM network,

but values are boolean instead of continuous probabilities.

Integration of transcription, decoding and dictionary search

in one network could reduce the overall error rate by allowing

the network to learn domain specific statistics in all three

steps. Also moving decoding and dictionary search into a

LSTM network could allow speed improvements by moving

the execution to a GPU accelerator.

This work uses an English word corpus [7] derived from

the Google Trillion Word Corpus [8] in its experiments.

II. METHODOLOGY

Strings used in this work are in English language and

between 3 and 10 characters in length. The alphabet is 26

characters in size. Each string is represented as a matrix of

size 10 × 26 with individual characters encoded by a one-

hot coding, setting one of the 26 coefficients to one and all

others to zero. For example the character A is encoded as

[1, 0, . . . , 0], B as [0, 1, 0, . . . , 0] and so on. Strings shorter

than 10 characters in length are padded with zero coefficients.

Strings are processed by the RNN as sequences of 10 length

with 26 features per step.

The network takes two separate inputs. One is the encoded

representation of the dictionary strings with the strings con-

catenated along the feature-dimension. This results in an input

of size |batch| × 10 × (26 × |dictionary|) for mini-batch

training. Dictionaries are 100 strings each in this work and

thus the encoded dictionary is |batch| × 10 × 2600 in size.

Second input is the representation of the query strings with

|batch| × 10× 26 in size.

The RNN consists of multiple bidirectional [9] LSTM layers

with the same number of neurons per layer. The networks

task is to process the query string and predict the string edit

distances to the dictionary strings as a regression problem.

The encoded dictionary is provided as input by concatenating

it with the BLSTM input along the feature-dimension. This

topology is shown in Figure 1.

Output layer of the RNN is fully connected with ReLU

[10] non-linearity. This layer consists of one neuron per string

of the dictionary, in our case 100 neurons. These neurons

predict the string edit distances between the query string and

the dictionary strings. String edit distance is zero or positive



Fig. 1. Network topology for comparing query strings of up to 10 characters
length with an alphabet of 26 characters to a dictionary of 100 such strings.

and as such the ReLU non-linearity is capable of predicting

it without re-scaling. Loss function for training is the Mean

Squared Error (MSE) of the predicted and correct string edit

distances.

III. RESULTS

Data for training and evaluation was derived from the 20k

most frequent English words [7] [8] with a length between

3 and 10 characters, which results in a set of 16968 strings.

1000 of these were used as 10 dictionaries of 100 strings each.

9 dictionaries were for training, the other only for evaluation.

A random one of the 9 dictionaries was chosen for each mini-

batch during training. 80% of the remaining strings were used

as query strings for training and 10% each for validation and

evaluation.

Optimization of the network was done using Adam [11]

with a learning rate of 0.001 and a mini-batch size of 16.

Training was limited to a maximum of 200 epochs. Multiple

optimization strategies were evaluated but Adam and mini-

batch training produced good and reliable results.

TABLE I
RMSE FOR DIFFERENT NETWORK SIZES WITH UNSHUFFLED

DICTIONARIES.

#layers × #neurons 2× 30 2× 60 3× 60 5× 200

Test set, unkn. dict. 1.78 1.78 1.56 2.13

Validation set, unkn. dict. 1.78 1.80 1.57 2.14

Training set, unkn. dict. 1.78 1.79 1.57 2.12

Test set, known dict. 0.37 0.30 0.29 0.36

Validation set, known dict. 0.37 0.29 0.29 0.36

Training set, known dict. 0.37 0.29 0.28 0.34

Table I shows the Root Mean Squared Error (RMSE) for

the described network and experiment. The 10 dictionaries

were not shuffled in this experiment and thus the strings

remained in the same order within each dictionary for the

whole training and evaluation. Much lower RMSE values were

achieved for the 9 known dictionaries in comparison to the

unknown dictionary.

Table II contains RMSE values for the same experimental

set-up, but the dictionaries were randomly shuffled and thus

TABLE II
RMSE FOR DIFFERENT NETWORK SIZES WITH SHUFFLED DICTIONARIES.

#layers × #neurons 2× 30 2× 60 3× 60 5× 200

Test set, unkn. dict. 0.86 0.84 0.84 0.84

Validation set, unkn. dict. 0.86 0.84 0.84 0.84

Training set, unkn. dict. 0.86 0.84 0.84 0.84

Test set, known dict. 0.85 0.82 0.82 0.81

Validation set, known dict. 0.85 0.82 0.82 0.81

Training set, known dict. 0.85 0.82 0.82 0.81

the strings were in random order within their dictionary.

Shuffling was done for each mini-batch to reduce the risk

of repeating the same dictionary order. Results show a much

smaller gap in RMSE between the known and unknown

dictionaries.

IV. DISCUSSION

The conducted experiments are promising and show that

LSTM networks are capable of learning to predict the string

edit distance while separating dictionary data from the actual

algorithm. The achieved RMSE of ≈ 0.8 is not enough to

retrieve the correct distance by rounding. It may still enable

the use of such networks for applications like decoding of

CTC-trained text recognizers. Further studies are necessary

to validate the assumptions made about a close integration of

CTC-based text recognition and string edit distance calculation

in one network.
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