
Improving gradient-based LSTM training for o�ine
handwriting recognition by careful selection of the

optimization method

Martin Schall
Institute for Optical Systems
University of Applied Sciences

Constance, Germany
Email: martin.schall@htwg-konstanz.de

Marc-Peter Schambach
Siemens Postal, Parcel &
Airport Logistics GmbH
Constance, Germany

Email: marc-peter.schambach@siemens.com

Matthias O. Franz
Institute for Optical Systems
University of Applied Sciences

Constance, Germany
Email: mfranz@htwg-konstanz.de

Abstract—Recent years have seen the proposal of several
di�erent gradient-based optimization methods for training
arti�cial neural networks. Traditional methods include steep-
est descent with momentum, newer methods are based on
per-parameter learning rates and some approximate Newton-
step updates. This work contains the result of several experi-
ments comparing di�erent optimization methods. The exper-
iments were targeted at o�line handwriting recognition using
hierarchical subsampling networks with recurrent LSTM
layers. We present an overview of the used optimization
methods, the results that were achieved and a discussion of
why the methods lead to di�erent results.

Index Terms—o�line handwriting recognition; recurrent
neural network; long-short-term-memory; connectionist tem-
poral classi�cation; gradient-based learning; adadelta; rm-
sprop

I. Introduction

Advances in the �eld of unconstrained and segmentation-
free o�ine handwriting recognition using arti�cial neural
networks have been considerable in the last years [1] and
complete systems for this task have been published [2].
O�ine handwriting recognition is in use in applications
such as postal automation, banking and historical document
analysis.

State of the art solutions for Latin script o�ine handwrit-
ing recognition are based on Multi-Dimensional Long-Short-
Term-Memory MDLSTM [3] [4] recurrent neural networks
organized as hierarchical subsampling networks [5]. Such
networks can be trained for sequence classi�cation using
Connectionist Temporal Classi�cation CTC [6]. CTC allows
the training of networks for segmentation-free sequence clas-
si�cation without knowledge about the location of contained
labels, based only on knowledge about the correct label
sequence.

Newton’s method can be used to determine an individual
step-size for each parameter during backpropagation training
of the arti�cial neural network [7]. Using Newton’s method
leads to fast convergence rates but requires the calculation
of second-order derivatives of the error function. Since the
calculation of second-order information is computationally
expensive during backpropagation-based training, methods

like AdaDelta [8] try to approximate it using only �rst-order
information.

RProp [9] [10] provides an individual learning rate per
parameter using only the changes in the sign of the partial
derivative, similar to the Manhattan rule. RMSProp [11] im-
proves on this concept by generalizing to mini-batch training
variants of the backpropagation algorithm. RMSProp does so
by normalizing the gradient using the rolling mean value of
the previous �rst-order derivatives.

This work provides an overview and comparison of con-
temporary gradient-based optimization methods for training
hierarchical subsampling MDLSTM-networks using CTC. All
experiments were done using the IAM o�ine handwriting
database [12]. It is meant as a guide for practitioners in the
�eld of o�ine handwriting recognition. In addition, this work
includes theoretical interpretations of the observed results.

The paper starts by describing the used network topology
in section II, the investigated optimization methods in section
III and the experiments executed in section IV. Section V
presents the results of the experiments and section VI dis-
cusses the problems arising with the optimization methods.
Section VII concludes the paper.

II. Network

The network topology was identical for all experiments
and is based on the hierarchical subsampling network using
MDLSTM-cells applied for Arabic handwriting recognition
[2] [5]. While the network topology was unchanged, the hy-
perparameters and sizes of the neuron layers were modi�ed.
The exact network topology, beginning at the network input,
and hyperparameters are described in table I.

The LSTM variant [13] used in the comparisons includes
forget gates, peephole connections, bias values and the full
gradient for backpropagation. The fully connected feedfor-
ward neurons had no bias, except for the very last neuron
layer. The non-linearities are the standard logistic sigmoid
φ(x) = 1

1+e−x for the LSTM gates and the hyperbolic tangent
tanh(x) for all other activations. The network consists of
a total of 148799 parameters, all of which were initialized

TABLE I
Network topology used for the experiments

Type of layer Con�guration
Input image Grayscale; 81 pixel in height
Subsampling 2× 3 (width × height)
MDLSTM 2 cells per scan direction
Subsampling 2× 3 (width × height)
Fully connected feedforward 6 neurons; no bias
MDLSTM 10 cells per scan direction
Subsampling 2× 3 (width × height)
Fully connected feedforward 20 neurons; no bias
MDLSTM 50 cells per scan direction
Fully connected feedforward 79 neurons; with bias
Collapse
Softmax
CTC 78 glyph labels; 1 blank label

drawing from a random uniform distribution in the interval
[−0.1;+0.1].

III. Methods

The following paragraphs outline the gradient-based op-
timization methods: Steepest descent with momentum, RM-
SProp and AdaDelta. In all equations, gt is the gradient at
time t and δxt the parameter updates at time t. µ is always
the learning rate, α the decay rate and β the dampening
factor. All variables are initialized to zero if not otherwise
de�ned.

Algorithm 1 Steepest descent with momentum

δxt = (µ× gt) + (α× δxt−1)

Algorithm 1 describes the steepest descent optimizer with
a simple momentum term added. It scales the �rst-order
derivative of the error function by a constant learning
rate, thus generating parameter updates that are directly
proportional to the gradient. The added momentum term
prevents the optimizer from following jitters in the error
function along the current path. Figuratively speaking, if
the optimization process is a ball moving down the error
landscape, momentum changes the gradient from being a
vector of movement to a vector of force applied to the ball.

Algorithm 2 RMSProp

E[g2]t = ((1− α)× g2t) + (α× E[g2]t−1)
δxt = µ× gt√

E[g2]t

RMSProp, outlined in Algorithm 2, is a generalization of
RProp that allows mini-batch training. Both only take the
sign of the gradient into account but determine the step size
of parameter updates independently from the absolute value
of the gradient. RMSProp does so by using a rolling mean
of the gradient for normalization. It e�ectively allows the
user to choose the actual step size of parameter updates as
a hyperparameter.
Algorithm 3 describes AdaDelta, which uses an approxima-

tion of the diagonal values of the Hessian matrix to do quasi-

Algorithm 3 AdaDelta with additional learning rate

E[g2]t = ((1− α)× g2t) + (α× E[g2]t−1)

ut = gt ×
√

E[δx2]t−1+β√
E[g2]t+β

E[δx2]t = ((1− α)× u2
t) + (α× E[δx2]t−1)

δxt = µ× ut

Newton updates. AdaDelta provides per-dimension step sizes
and basically removes the need to manually choose a learning
rate. The idea behind AdaDelta is outlined in the according
publication [8], calculating the parameter updates based on
the inverse Hessian as δx

g
. Since both the total parameter

updates δx and the total gradient g for the Newton step are
unknown, they are approximated using a rolling mean of the
last values. A variant of AdaDelta adds an additional learning
rate µ, which should be chosen as a value near 1.0 since the
unmodi�ed AdaDelta implies a global learning rate of 1.0.
When gradient clipping was applied, only the error signal

that is transported from a LSTM layer to its predecessor
was truncated. Recalling the network topology de�ned in
Table I, this concerns only the transition between the last
two MDLSTM layers and their previous fully connected
feedforward layers. The error signal was hard clipped to be
within the interval [−1;+1].

IV. Experiments

All experiments were carried out using the IAM o�ine
handwriting database [12] with the images being rescaled to
8-bit grayscale and �xed 81 pixel in height with a variable
width. A random subset of 90% (86809) samples were used
for training and 5% (4822) each for validation and evaluation.
A sample of the IAM database is shown in �gure 1.

Fig. 1. Example of the IAM database

The network is speci�ed in section II and the target
function of supervised training was CTC with 78 visible
character classes of the IAM database. No normalization of
labels was applied.
If not otherwise noted, the training was done using mini-

batch updates of size 8 and the full non-clipped gradient.
The gradients within a mini-batch were summed, but not
normalized afterwards. The training samples were processed
in a random permutation for each training epoch. The
experiments used early stopping until the validation error
rate did not improve for 5 epochs.
The following individual experiments were conducted in

this work:

1) Steepest descent with momentum and full gradient.
2) Steepest descent with momentum and gradient clip-

ping.

3) RMSProp.
4) AdaDelta without additional learning rate.
5) AdaDelta with additional learning rate.

The hyperparameters were chosen on basis of previous
experiments with this network architecture and the IAM
database. The hyperparameters have proven to be suitable
for training this network for o�ine handwriting recognition.

Error rate was measured in terms of Character Error Rate
CER at the end of each training epoch. CER is de�ned as

the percentage CER(y, z) = 100×ED(y,z)
|y| . It measures the

part of the edit-distance [14] ED(y, z) between the correct
label string y and the decoded network output z in relation
to the length |y| of the correct label. The CER of these
experiments are averages over all samples within the training
set or validation set respectively.

V. Results

Fig. 2. Steepest descent with µ = 1e−4 and α = 0.9

Fig. 3. Steepest descent with µ = 1e−4 and α = 0.9 (gradient clipping)

Figures 2 and 3 show the convergence of the CER during
training using steepest descent with momentum. Hyperpa-
rameters were µ = 1e−4 and α = 0.9. The training using
the full non-clipped training did not converge to acceptable
error rates as can be seen in �gure 2. The use of gradient
clipping did improve the convergence of CER, see �gure 3,

during training. The convergence rate is still lower than with
RMSProp or AdaDelta, however.
As can be seen in �gure 2, the CER initially decreases for

some epochs but then started increasing again and stabilizes
at 99%.

Fig. 4. RMSProp with µ = 1e−3 and α = 0.9

Figure 4 shows the convergence of the error rate using
RMSProp with µ = 1e−3 and α = 0.9. It shows a faster
convergence rate than steepest descent with gradient clipping
and achieves a lower error rate.

Fig. 5. AdaDelta with µ = 1, α = 0.95 and β = 1e−6

Fig. 6. AdaDelta with µ = 0.5, α = 0.95 and β = 1e−6

Figures 5 and 6 contain the results using AdaDelta. Both
use the hyperparameters α = 0.95 and β = 1e−6. The
experiment described in �gure 5 used a learning rate of
µ = 1, thus corresponds to the original work by the authors
of AdaDelta [8]. Figure 6 uses an additional learning rate of
µ = 0.5, which reduces the convergence rate by the same
factor. Using an additional learning rate proved to result in
lower �nal error rates.
The fastest convergence rate in these experiments was

achieved using AdaDelta with µ = 1, α = 0.95 and
β = 1e−6, the lowest error rate with AdaDelta and µ = 0.5.

VI. Discussion

Fig. 7. Exemplary saddle point of an error function in a two-dimensional
parameter space

In the following section, we discuss possible reasons for
why the compared optimization methods behave di�erently
in terms of convergence of network error. Recent work [15]
[16] has shown that saddle points in the error function
tend to be a major problem while training arti�cial neural
networks. Other potential problems arise from the interaction
between Backpropagation-Through-Time BPTT [17] and a
momentum term in the optimization method. Figure 7 shows
an error function with a saddle point that highlights the
di�erent behavior of the three optimization methods in this
situation. Saddle points in the error function are interesting
because they both consist of steep and shallow parts but the
direction of any gradient descent optimization will change
on a saddle point. Di�erences arise as soon as the gradient
descent optimization moves from the steep �ank of the error
function to somewhere near the saddle point.
Consider Algorithm 1 (steepest descent with momentum):

while descending down the steep part of the error function,
the momentum will increase accordingly. The absolute value
of the gradient will be very small in comparison to the gradi-
ent on the steep part, which results in only a small impact of
the current gradient when updating the parameters. In this
exemplary case, gradient descent will overshoot the saddle
point instead of following the gradient to the decreasing error
values.
RMSProp and AdaDelta, see algorithms 2 and 3, tackle

this problem by normalizing the parameter updates with the

expectation value of the absolute gradient. The expectation
value is again large after traversing the steep �ank of the
error function. After normalization, the relatively small gradi-
ent near the saddle point will be even smaller. The actual per-
parameter learning rate is decreased and thus the gradient
descent slows down near the saddle point. An increase in
the per-parameter learning rate will occur as soon as the
expectation value of the gradient has adapted to the small
gradient value. This behavior allows for a change of direction
near saddle points without overshooting it.
Another potential problem arises in the BPTT algorithm

in combination with training samples of variable sizes, e.g.
di�erent sizes of the input images. BPTT calculates the
gradient by virtually unrolling the recurrent network into a
feedforward network. Training samples of longer sequences
will result in ’deeper’ unrolled networks. Parameters of
recurrent layers are shared in the unrolled network and thus
their gradients need to be summed again before updating
their parameters. Similar to mini-batch training, the gradients
summed up to obtain the accumulated gradient for the
recurrent layer.
Steepest descent with momentum and full gradient is

prone to an e�ect similar to the ’exploding gradient’: The
absolute value of the gradient is directly proportional to the
sequence length. For a long sequence, the momentum will be
accumulated, while short sequences have little impact on gra-
dient descent. This again leads to overshooting of minimum
points or saddle points. This ’exploding gradient’ explains
why gradient clipping is e�ective for steepest descent, as
can be seen in the convergence rates of �gures 2 and 3.

VII. Conclusion

This work presents the results of several experiments
training hierarchical subsampling networks using LSTM-cells
for o�ine handwriting recognition. Three di�erent gradient-
based optimization methods were used: steepest descent, RM-
SProp and AdaDelta. Steepest descent was tested both with
the full, non-clipped, gradient and with gradient clipping.
The results show a better convergence rate for RMSProp

and AdaDelta than for normal steepest descent. Both RM-
SProp and AdaDelta are easy to implement and cause only a
linear overhead in memory consumption which makes them
reasonable choices for practitioners. AdaDelta with a reduced
learning rate of 0.5 achieved the lowest error rate of all
experiments.
Section VI rationales why steepest descent shows a worse

behavior than RMSProp or AdaDelta in the presence of saddle
points or when using BPTT for recurrent neural networks.
Saddle points can be expected [16] in high-dimensional non-
convex optimization problems such as o�ine handwriting
recognition. BPTT is the establish method for gradient-
based training of recurrent neural networks and as such,
problems arising out of the interaction between BPTT and
the optimization method should be considered.
Based on the observations during the experiments and

the following re�ections, the authors are suggesting to use

AdaDelta for training LSTM networks for o�ine handwriting
recognition. Newer optimization methods, such as Adam [18],
were not taken into consideration but may give even results.

Acknowledgment

The authors would like to thank the Siemens Postal, Parcel
& Airport Logistics GmbH for funding this work. The authors
would also like to thank Jörg Rottland for proof-reading this
work and his valuable suggestions.

References

[1] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained
handwriting recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.

[2] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-
works. Springer, 2012.

[3] A. Graves, S. Fernandez, and J. Schmidhuber, “Multi-Dimensional
Recurrent Neural Networks,” IDSIA/USI-SUPSI, Tech. Rep., 2007.

[4] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
continual prediction with LSTM.” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[5] A. Graves and J. Schmidhuber, “O�ine Handwriting Recognition with
Multidimensional Recurrent Neural Networks,” in Advances in Neural
Information Processing Systems 21, NIPS’21, 2008, pp. 545–552.

[6] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
Temporal Classi�cation : Labelling Unsegmented Sequence Data with
Recurrent Neural Networks,” in Proceedings of the 23rd international
conference on Machine Learning. ACM Press, 2006, pp. 369–376.

[7] T. Schaul, S. Zhang, and Y. LeCun, “No More Pesky Learning Rates,”
Journal of Machine Learning Research, vol. 28, no. 2, pp. 343–351, 2013.

[8] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” p. 6,
2012.

[9] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: the RPROP algorithm,” IEEE International
Conference on Neural Networks, 1993.

[10] C. Igel and M. Hüsken, “Improving the Rprop learning algorithm,” in
Proceedings of the Second International Symposium on Neural Computa-
tion, 2000, pp. 115–121.

[11] Y. N. Dauphin, J. Chung, and Y. Bengio, “RMSProp and equilibrated
adaptive learning rates for non-convex optimization,” Tech. Rep., 2014.

[12] U. V. Marti and H. Bunke, “The IAM-database: An English sentence
database for o�ine handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2003.

[13] K. Gre�, R. K. Srivastava, J. Koutník, B. Steunebrink, and J. Schmid-
huber, “LSTM: A Search Space Odyssey,” IDSIA/USI-SUPSI, Tech. Rep.,
2015.

[14] R. A. Wagner and M. J. Fischer, “The String-to-String Correction
Problem,” Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.

[15] A. Choromanska, M. Hena�, M. Mathieu, G. B. Arous, and Y. LeCun,
“The Loss Surfaces of Multilayer Networks,” Aistats, vol. 38, pp.
192—-204, 2015. [Online]. Available: http://arxiv.org/abs/1412.0233

[16] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization,” arXiv, pp. 1–14, 2014.
[Online]. Available: http://arxiv.org/abs/1406.2572

[17] R. Rojas, “The Backpropagation Algorithm,” in Neural Networks.
Springer, 1996, pp. 151–184.

[18] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimiza-
tion,” International Conference on Learning Representations, pp. 1–13,

2015.

