
Increasing robustness of handwriting recognition

using character n-gram decoding on large lexica

Martin Schall

Institute for Optical Systems

University of Applied Sciences

Constance, Germany

Email: martin.schall@htwg-konstanz.de

Marc-Peter Schambach

Siemens Postal, Parcel &

Airport Logistics GmbH

Constance, Germany

Email: marc-peter.schambach@siemens.com

Matthias O. Franz

Institute for Optical Systems

University of Applied Sciences

Constance, Germany

Email: mfranz@htwg-konstanz.de

Abstract—Offline handwriting recognition systems often in-
clude a decoding step, that is retrieving the most likely char-
acter sequence from the underlying machine learning algorithm.
Decoding is sensitive to ranges of weakly predicted characters,
caused e.g. by obstructions in the scanned document. We present
a new algorithm for robust decoding of handwriting recognizer
outputs using character n-grams. Multidimensional hierarchical
subsampling artificial neural networks with Long-Short-Term-
Memory cells have been successfully applied to offline handwrit-
ing recognition. Output activations from such networks, trained
with Connectionist Temporal Classification, can be decoded with
several different algorithms in order to retrieve the most likely
literal string that it represents. We present a new algorithm for
decoding the network output while restricting the possible strings
to a large lexicon. The index used for this work is an n-gram index
with tri-grams used for experimental comparisons. N-grams
are extracted from the network output using a backtracking
algorithm and each n-gram assigned a mean probability. The
decoding result is obtained by intersecting the n-gram hit lists
while calculating the total probability for each matched lexicon
entry. We conclude with an experimental comparison of different
decoding algorithms on a large lexicon.

I. INTRODUCTION

The problem of recognizing unconstrained and unsegmented

handwriting text using artificial neural networks has received

considerable attention in recent years. Current publications

show that artificial neural networks can be trained successfully

to recognize single lines of unsegmented handwritten text

[1]. Practical applications of offline handwriting recognizers

include scanned texts with obstructed, damaged or dirty parts.

Decoding of the neural network output at such positions is

difficult.

State of the art solutions use recurrent neural networks

containing Long-Short-Term-Memory LSTM cells [2] [3] [4]

in multi-dimensional hierarchical subsampling [5] [6] net-

works. Connectionist Temporal Classification CTC [7] [1] is

applied as a supervised training for neural networks, training

both character classification and localization on unsegmented

handwritten text. CTC trains the network using a variant

of the forward-backward-algorithm [8] to infer the posterior

distribution of the characters using the networks prediction

and the known correct label. Handwriting recognition based

on this technology has been awarded top positions in in-

ternational competitions. The output of such a network is

a one-dimensional sequence of label probabilities. In order

to interpret the output activations as label probabilities, the

Softmax function is applied on each position of the sequence

individually. The data structure of the final network is a

two-dimensional matrix with one dimension representing the

spatial distribution of the characters and the other dimension

specifying the learned labels for character recognition. Proba-

bilities at each position in the output sum up to one with each

individual probability in the range between zero and one.

A network trained with CTC classifies handwritten text

from an input image and produces a sequence of label prob-

abilities. CTC is a supervised training for artificial neural

networks which trains the network for both the classification

and localization of characters. As such it does not require the

input to be pre-segmented or the training data labeled with

spatial information. CTC does train the network to learn the

correct label classifications and order of the sequence but not

necessarily the exact character positions [9, chap. 7.2].

Decoding of the network output generates a readable char-

acter sequence with a high combined probability given the

label probabilities estimated by the network. Decoding can be

done both with and without constraining the output strings to

a given lexicon or grammar [9, chap. 7.5].

The algorithm proposed in this paper generates an n-gram

index for a given lexicon of allowed character strings and

uses this index to decode the output of an recurrent neural

network trained with CTC. Decoding of the output is done by

finding n-grams with above-average combined probability in

it and, in a second step, combining these n-grams to match

entries of the given lexicon. Extraction of the n-grams is done

in a robust way. The result of one decoder run is a small

subset of lexicon entries with combined probabilities assigned

to them. Combined probabilities are constituted of weighted

combinations of the contained n-grams.

The paper begins in section II by detailing the proposed

decoding algorithm starting with the n-gram index generation

in II-A, followed by information on the network output in II-B,

extraction of n-grams from it in II-C, intersection of n-grams

in II-E and confidence estimation in II-F. A modification of the

decoding algorithm to allow single word detection or whole

line decoding is given in II-G. Details on the algorithm are

followed by the results of an experimental comparison with

other decoding algorithms in section III. The paper concludes

with a discussion of the results in section IV.

II. METHODOLOGY

A. Generating the index

The n-gram index consists of a map from n-grams to one

hit list per n-gram referencing the lexicon entries containing

the mapped n-gram. This map contains each key (the n-gram)

only once and uses exact look-up algorithms to find n-grams.

Several different data structures, such as binary trees, tries or

hash maps, are suitable for this task. Since building the n-gram

index is done once and after that accessed read-only, emphasis

should be placed on a low complexity for the look-up of an

n-gram. The hit lists contain references to lexicon entries and

the position of the n-gram within each specific entry.

Fig. 1. Example index generation

Figure 1 shows an example index using bi-grams and with

two example strings. The digits of the bi-grams are enclosed in

brackets to illustrate that they are class labels and not the actual

characters. The double lined arrow in the figure represents the

index generation to compile the provided word lexicon into the

n-gram index for later use. The single lined arrows illustrate

references within the data structure, pointing from n-grams

within the map to their according hit lists.

N-grams within the index are generated by traversing each

string contained in the lexicon once and extracting the n-gram

starting at the current position. Since the network output is

restricted to a predefined set of labels and only these can

be matched, the lexicon entry must be converted to its label

sequence before extracting the n-grams. Characters need to be

mapped to labels, learned by the neural network, before n-

gram generation. Characters that are not used as a label are

ignored. Characters are mapped to labels, the classes learned

by the neural network, in order to reduce the number of

trained classes and to consolidate similar looking characters.

The length of the individual n-grams is kept constant for the

whole index, common choices are lengths of two or three (bi-

grams or tri-grams). Using shorter n-grams allows for more

error tolerance, but more n-grams with less information gain

will be generated, resulting in a negative impact on the run-

time. The choice of the n-gram size is thus a trade-off between

error tolerance and run-time. Each generated n-gram is inserted

into the map and the ID of the lexicon entry appended to the

assigned hit list.

Generating the n-gram index for a given lexicon is depen-

dent on the configuration of the used artificial neural network

but not on the actual output of the network for a specific input.

The set of all label classes and the assignment from character

to label class must be known from the configuration of the

network before generating the index. This allows to build the

index once for a given lexicon and network configuration in

advance in order to reduce run-time usage by storing and

reusing the index.

Later decoding of the network output requires an intersec-

tion of the hit lists assigned to the found n-grams. Intersection

of multiple hit lists is the task of collecting entries that occur

in multiple such hit lists and has been in current literature

[10] [11] [12]. To reduce the run-time of this algorithm, the

hit lists are sorted by the lexicon entry’s ID in ascending order,

hit list items with equal entry ID are further ordered by the

ascending position of the n-gram within the entry. This order

is easily achieved by generating the n-grams starting with the

first lexicon entry and appending the entry ID to the end of

the related n-gram hit lists.

N-grams occurring in a large number of lexicon entries

result in a large hit list within the index. Long hit lists

require a high amount of disk space for storage and have

a negative impact on run-time for hit list intersection. On

the other hand, frequently occurring n-grams contain little

amount of information that can be used for distinguishing

between multiple lexicon entries. Consequently, very long hit

lists should be removed from the index. In our paper, n-grams

that occur in more than ten percent of the lexicon entries were

removed from the index.

B. Network output activations

Connectionist Temporal Classification [7] CTC is an output

layer for recurrent neural networks. It uses a variant of the

forward-backward-algorithm [8] to infer posterior probabilities

for the label classes based on the networks estimation and

the known correct label sequence. The network itself is then

trained using backpropagation [13] with the negative logarith-

mic likelihood target function. The output of a network trained

with CTC is a one-dimensional sequence of label probabilities.

As such the output has a non-fixed length growing linearly

with the width of the input image. In fact the output length is

determined by the combined width of the sub-sampling win-

dows applied by the chosen network topology. Each position

in the output sequence has a fixed number of values, one for

each label class that can be recognized by the network. The

application of the Softmax function individually at each output

sequence position allows the interpretation of the output as

label probabilities over the sequence.

Networks trained with CTC recognize one more label class

than necessary for the printable characters used in the written

language. This additional label class is called the ’blank-label’

or ’non-label’ and is an invisible separator label. A network

trained with CTC does predict labels in the output as a series

of ’spikes’, one for each label in the sequence.

Since after subsampling individual characters are still likely

to have a width greater than one in the network output, the

number of spikes (localized label predictions) is lower than

the length of the network output. This and the unknown

image segmentation makes the blank-label necessary [7]. The

blank-label separates individual characters within the output

sequence and allows distinguishing between one character in

the input triggering multiple adjacent output activations and

true repetitions of the same character within the input.

Note that the prediction of the blank-label does not neces-

sarily indicate the absence of a visible character, but possibly

the continuation of the previous or following character.

TABLE I
EXAMPLE OUTPUT SEQUENCE FOR THE INPUT STRING ’ABBC’

Position 1 2 3 4 5 6 7 8 9 10

(A) 0.5 0.9 0.1 0.0 0.3 0.0 0.1 0.0 0.3 0.1
(B) 0.0 0.0 0.1 0.7 0.3 0.9 0.7 0.0 0.2 0.0
(C) 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7
’blank’ 0.2 0.1 0.8 0.3 0.4 0.1 0.2 1.0 0.1 0.2

Table I shows the possible network output sequence for

the example input string ’abbc’. Note that the same label

can be repeatedly strongly activated both with and without

repetition of the same character within the input. A change

of the strongest activation from one label to another or the

strong activation of the blank-label signals the transition from

one label class to another. The total activations at each output

position always sum up to one with a minimal activation of

zero.

One basic decoding algorithm for this type of network out-

put is detailed in [9, chap. 7.5.1], called ’Best Path Decoding’.

It is based on finding the label with the maximum activation at

each position of the network output and concatenating these to

a intermediate label string. Removing repetitions of the same

label and the invisible blank-label from this label string yields

the decoded string. Since this algorithm yields non-optimal

results for network outputs with multiple weakly predicted

labels, ’Prefix Search Decoding’ [9, chap. 7.5.2] should be

preferred for practical applications.

C. Extracting n-grams from the network output

A network trained with CTC is primed to produce out-

put activations in spikes, that is in short and confined sub-

sequences within the output sequence. For good recognizable,

distinguishable handwritten input these spikes of the output

activations alternate between the blank-label and labels related

to printable characters or symbols.

For the proposed decoding algorithm, each n-gram must

start and end with a printable character or symbol because the

blank-label is used solely as a invisible separator label. Also

the blank-label is not used during index generation, making

the matching of n-grams containing blank-labels impossible.

In total, a n-gram of n labels consists of n printable labels

and up to n − 1 blank-labels. A total of at last n and up to

(2× n)− 1 spikes within the output activations are used per

n-gram. Contained blank-labels between the visible character

labels is seen as the normal case because the network output

is most likely longer than the correct string with the labels

predicted as spikes, thus containing predicted blank-labels in

between. Blank-labels in this case mark either regions without

a drawn character or continuations of neighboring characters.

N-grams are extracted from the network output by using

a backtracking [14] algorithm. Backtracking starts at a given

position within the sequence and produces n-grams starting

at this position. To extract n-grams covering the whole output

sequence, this backtracking algorithm must be started for each

position in the output sequence.

The backtracking algorithm proposed in this work does

collect the n-grams and calculate their probability at the same

time. It uses a recursive depth-first strategy for building n-

grams and calculating the mean probability. Repetitions of the

same label are resolved by using only the maximum activation

of the label within the repeating sub-sequence. This way only

the peak of the activation spike for each label of the n-gram

is used for probability calculation. On the other hand, the

spikes for different labels are allowed to be distributed over

wide sub-sequences, which makes the n-gram extraction more

resilient against false-positive activations or multiple mediocre

activations at the same position.

The probability of each extracted n-gram is calculated as

the mean probability

p(G|y) =
1

(n× 2)− 1

∑

g∈G

ylg (ig) (1)

with G being the set of (n × 2) − 1 activation spikes that

contributed to the n-gram, each a tuple of label lg and position

ig . yl(i) defines the network output for label l at position i.

This allows for further interpretation of the n-gram probability

in terms of stochastic probabilities.

The backtracking algorithm is restricted by thresholds for

the activations within the network output. Only paths with an

activation higher than the threshold can be followed, resulting

in a lower number of extracted n-grams but also reduced run-

time requirements. The activation threshold is allowed to be

different for each label. In this work, a threshold of 0.25 was

used for printable labels and 0.001 for the blank-label.

D. Index access with incomplete information

The following sections detail the extraction of n-grams

from the networks output activations and intersection of their

hit lists. Equations for estimating the probabilities of both

individual n-grams and lexicon entries are based on calculating

the weighted mean probability over their elements. General

decoding algorithms calculate probabilities with respect to

principles of the Viterbi-algorithm [15] [16], a product of the

element probabilities.

Accessing the proposed n-gram index should be done, in

order to reduce run-time, with as few n-grams as possible

while still using n-grams contributing to the distinction be-

tween relevant and non-relevant lexicon entries. This leads to

incomplete information during the intersection of the extracted

n-gram hit lists. As a result, lexicon entries having not all their

included n-grams extracted from the network output will be

processed during hit list intersection. Probabilities for these

n-grams are thus unknown to the algorithm.

Correct probabilities for the missing n-grams can be calcu-

lated by an online evaluation of the current lexicon entry based

on the network output. Since the indexed lexicon and the hit

lists are potentially large, this approach would degrade the

run-time of the proposed decoding algorithm. Because of this,

a simple approximation of the missing n-gram probabilities is

used by the proposed decoding algorithm.

A Viterbi-like-decoder, calculating the product over all

best path element probabilities, needs an estimation of these

unmatched n-gram probabilities. Estimations of zero or one

probabilities lead to the lexicon entry being discarded entirely

or unmatched parts having no effect at all. This would mean

either biasing partially matched entries positively or discarding

them entirely. Probability estimations in between, without

further evaluation of the network output, act as a constant

coefficient in the final probability that can be arbitrarily

chosen.

All three potential behaviors in Viterbi-like-decoders with

incomplete information from extracting the n-grams within

the network output are unwanted in this context. It is to be

expected that not all n-grams related to any given lexicon entry

were extracted from the network output.

The proposed algorithm calculates the lexicon entries prob-

ability as a weighted mean and allows unmatched n-grams to

be included in the equation with zero probability as estimate.

This penalizes partly matched entries without discarding them

entirely. Pruning of the n-gram extraction in this case reduces

the run-time without directly affecting the results in a negative

way. Pruning during the n-gram extraction then needs to be

chosen carefully in order to allow extraction of n-grams that

are strongly predicted by the network. Weakly predicted n-

grams can be discarded during extraction in order to reduce

the run-time of the algorithm.

E. Intersection of n-gram hit lists

The final result of the proposed algorithm is a set of

lexicon entries related to the network output activations in

terms of a high mean probability of the lexicon entries labels

given the network output activation. Mean probabilities of the

lexicon entries are provided by the algorithm as a measure of

confidence for further pruning or processing of the result.

Retrieval of the matched lexicon entries is related to the

multiple search and t-intersection problems. These problems

describe the task of intersecting two or more ordered se-

quences with the additional constraint that each element of

the intersection must be contained in at least t of the sets.

Algorithms for solving these problems are published [10] [11]

[12].

Input for this step of the proposed algorithm is a set of n-

grams extracted from the network output and the generated

n-gram index itself. Hit lists for the extracted n-grams are

retrieved used the map contained in the n-gram index. N-grams

that occur in no lexicon entry, and thus do not map to lexicon

entries, are discarded. Frequent n-grams with their hit lists

removed are also discarded.

Matching of the lexicon entries is done by intersecting the

hit lists of the extracted n-grams. Additional constrains are put

in order that require the positions of the extracted n-grams

within the network output sequence and the lexicon entry to

be in the same order. This prevents usage of the n-grams in

arbitrary order and thus generation of arbitrary strings that

may not even be contained in the lexicon.

During intersection, each matched lexicon entry is rated

with its mean probability over the used n-grams. Mean prob-

abilities of the matched entries can be used both for ordering

and pruning the result of the intersection. Calculation of the

mean probabilities per lexicon entry is detailed in section II-F.

F. Confidence value for matched entries

Part of the matching of the network output sequence against

the lexicon is not only finding relevant entries but also to

measure the relevancy in terms of a probability. This allows

ordering and pruning of the result but also possibly influences

following algorithms in the whole system.

The total probability of a matched lexicon entry is calculated

out of the probabilities of the matched n-grams. As detailed

before, the probabilities of extracted n-grams are the mean

of their (n × 2) − 1 activation spikes in the network output.

To continue this idea, the total probabilities of lexicon entries

are calculated as the weighted mean over their matched n-

grams. N-grams that are included in the lexicon entry, but

not extracted from the network output are assumed to have a

probability of zero.

N-grams are allowed to overlap while matching a lexicon

entry with a maximum of n n-grams per position of the entry.

The exception are the front and rear n − 1 positions of the

entry that can not be matched by as many n-grams. This

makes weighting the n-gram probabilities for mean calculation

necessary in order to assign equal significance to each position

of the entry. N-grams at the front and rear of the sequence must

be weighted stronger than the n-grams in the middle.

Each entry position can potentially be matched by 1 to n n-

grams. For weight calculation, a total weight of n is assigned

to each entry position and this weight has to be shared between

the n-grams overlapping this position. This gives a total weight

of n× l for n-grams of size n and an entry of length l to the

entry. N-grams have a weight of at least n with higher weights

in the front and rear position because they share their weights

with fewer or no other n-grams in these positions.

The total weight of an n-gram of size n at position i of an

entry of length l is defined as

w(i, n, l) =
i+n∑

x=i

n

s(x, n, l)
(2)

with

s(x, n, l) = max(n− 1,min(x, l − (x+ n))) + 1 (3)

yielding the number of n-grams that share the entry position

x. Positions in these equations are counted starting with zero.

TABLE II
EXAMPLE DISTRIBUTION OF TRI-GRAMS OVER THE STRING ’ABCDEFG’

Weight
5.5 (A) (B) (C)
3.5 (B) (C) (D)
3.0 (C) (D) (E)
3.5 (D) (E) (F)
5.5 (E) (F) (G)

Table II gives an example for tri-grams (n = 3) and the

lexicon entry ’abcdefg’ (l = 7). The total weight of the lexicon

entry is 21 that has to be shared by the included n-grams.

The middle tri-gram shares all its positions with two other tri-

grams, it thus has a weight of 3. The first tri-gram is the only

one including the first entry position and shared the second

position with only one other tri-gram, receiving a weight of

3.0 + 1.5 + 1.0 = 5.5. Weight calculation is similar for the

other n-grams.

Final probability of a matched lexicon entry e based on the

extracted n-grams is

p(e|M,n, y) =
1

n× |e|

∑

m∈M

w(im, n, |e|)× p(Gm|y) (4)

with the set of n-grams matched by the lexicon entry and

network output M , the length of a single n-gram n, the length

|e| of the lexicon entry and network output y. p(Gm|y) = 0
for n-grams not extracted from the network output.

G. Single word detection vs. whole line decoding

Equation 4 defines the probability of a matched lexicon

entry as the mean probability with respect to the length of

the lexicon entry. This allows lexicon entries to reach the

maximum probability of 1 even when fully matching the

lexicon entry, but only a small part of the network output. This

behavior of the algorithm is not unwanted for some use-cases

because it allows one network output to produce multiple best

matches, each covering a sub-sequence of the network output.

This can be used as a word detection algorithm for localization

of single words within longer texts.

However, the algorithm can be easily modified for decoding

whole lines at once with the best match being the lexicon entry

that covers the full network output. For this the normalization

term in equation 4 has to be changed from 1

n×|e| to 1

n×|y|

with |y| being the length of the network output. With this

modification, a lexicon entry has probability 1 if it does fully

match the network output.

The probability expression for lexicon entries can be further

modified to suite specific use-cases. Word detection with

emphasis on longer lexicon entries can be achieved by cal-

culating both the unmodified and modified probability 4 for

the lexicon entries and calculating a weighted mean of the

two. The proposed decoding algorithm can then be configured

for any wanted emphasis on single word detection or whole

line decoding.

III. RESULTS

This section contains results of the comparison of different

artificial neural network decoding algorithms and their config-

urations in the context of offline handwriting recognition. The

used network was for all tests identical, the only difference

being the decoding algorithms and configurations.

The network topology was a three-layered multidimensional

hierarchical subsampling network [6] [5] using LSTM cells

[2] [3] [4]. Training was done using CTC [7]. Data for

training and evaluation of the network were handwritten postal

addresses from both the USA and Canada. A pre-processing

step binarized the images and separated them into single lines

of text. 135000 such images were used for training, 3000 each

for validation and test. There were no overlaps between these

three sets.

The trained neural network showed an 6.86% Character Er-

ror Rate CER on the test set, 7.01% CER on the validation set

and 5.50% CER on the training set. CER was measured using

nominal results from the Prefix Search Decoding described

by [9, chap. 7.5.2]. CER is the percentage of the Edit-distance

[17] to the length of the correct string.

Tests were done using the trained neural network and the

test data set with a lexicon containing the labels for the images

within all three data sets. The lexicon contained 423170

different strings, including the correct labels and variants of

them. Since the lexicon contained the correct labels, CER was

lower than with a nominal-only decoding.

Comparison was done between the following decoding

algorithms:

• Constrained Decoding on full set as described by [9,

chap. 7.5.3].

• Best Path Decoding & Levenshtein using Best Path De-

coding [9, chap. 7.5.1] to generate a nominal string and

followed by a search for similar lexicon entries using a

full-table-scan with the Levenshtein distance [17] [18] as

the measure. This provided a baseline for the error rate.

• n-Gram index decoding & Constrained Decoding using

the proposed decoding algorithm to filter the full lexicon,

generating a small subset of it. Constrained Decoding was

applied on this reduced lexicon to produce the final result.

• n-Gram index decoding only with the proposed decoding

algorithm, but without the afterward evaluation of the

reduced lexicon by Constrained Decoding. Instead the top

ranked lexicon entry was used for comparison.

Application of a ten percent threshold for frequent tri-grams

resulted in zero tri-grams being removed from the index.

The results are shown in table III with the best results in

Character Error Rate and wall clock run-time highlighted in

bold text. CER and run-time were calculates as the mean over

3000 test set images. The result with a reasonable trade-off

between CER and run-time is marked in italic font.

TABLE III
RESULTS OBTAINED USING DIFFERENT DECODING ALGORITHMS ON THE DESCRIBED TEST SET

Decoder Configuration CER Run-time

Constrained Dec. on full set beam-width 10000 1.05% 81.9ms

Constrained Dec. on full set beam-width 100000 0.76% 2297.7ms

Constrained Dec. on full set beam-width unlimited 0.58% 7444.5ms

Best Path Dec. & Levenshtein 1.52% 756.6ms

n-Gram index dec. & Constrained Dec. tri-grams, filter-size 100, beam-width 10000 0.87% 15.0ms

n-Gram index dec. & Constrained Dec. tri-grams, filter-size 500, beam-width 10000 0.65% 18.9ms

n-Gram index dec. only tri-grams 3.05% 13.3ms

IV. DISCUSSION

Using the proposed decoding algorithm as a filter of the

lexicon in combination with Constrained Decoding showed

CER values near of the unrestricted Constrained Decoding

algorithm in our experiments, while using only a portion of the

run-time. This suggests that the network output produced by

a hierarchical subsampling network using LSTM cells trained

with CTC is expressive enough to allow extraction of n-grams

without using context information. This in turn allows the

application of common information retrieval algorithms for

the problem of decoding an artificial neural networks output.

On the other hand, experiments show also that using the

proposed decoding algorithm alone results in sub-optimal CER

values while using equal configurations. This leads to the

conclusion, that the proposed algorithm acts as a efficient filter

of the lexicon, but the ranking of lexicon entries is not optimal.

Further research is thus necessary to improve the proposed

algorithm or adapt other information retrieval algorithms to

this problem in order to leave out the Constrained Decoding

in the process without loosing a large portion of the CER.

The original character strings of the lexicon should be stored

separately for use cases in which they are required as part of

the decoding result since the generated n-gram index does not

allow for a loss-less reconstruction of the character strings. The

index does not allow loss-less reconstruction since characters

not trained by the artificial neural network and very frequent

n-grams were removed from it. Removal of very frequent n-

grams is less of a practical concern since in our experiments,

no n-gram occurred in more than ten percent of the lexicon

entries.

ACKNOWLEDGMENT

The authors would like to thank Jörg Rottland for his

valuable suggestions and proof-reading of this paper.

REFERENCES

[1] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.
[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory.” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[3] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:

continual prediction with LSTM.” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[4] K. Greff, R. K. Srivastava, J. Koutník, B. Steunebrink, and J. Schmidhu-
ber, “LSTM: A Search Space Odyssey,” IDSIA/USI-SUPSI, Tech. Rep.,
2015.

[5] A. Graves, S. Fernandez, and J. Schmidhuber, “Multi-Dimensional
Recurrent Neural Networks,” IDSIA/USI-SUPSI, Tech. Rep., 2007.

[6] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with
Multidimensional Recurrent Neural Networks,” in Advances in Neural

Information Processing Systems 21, NIPS’21, 2008, pp. 545–552.
[7] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist

Temporal Classification : Labelling Unsegmented Sequence Data with
Recurrent Neural Networks,” in Proceedings of the 23rd international

conference on Machine Learning. ACM Press, 2006, pp. 369–376.
[8] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[9] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-

works. Springer, 2012.
[10] J. Barbay and C. Kenyon, “Adaptive intersection and t-threshold prob-

lems,” in Proceedings of the thirteenth annual ACM-SIAM symposium on

Discrete algorithms. Society for Industrial and Applied Mathematics,
2002, pp. 390–399.

[11] R. Krauthgamer, A. Mehta, V. Raman, and A. Rudra, “Greedy list inter-
section,” Weizmann Institute; IBM Almaden Research Center; Google
Inc.; Department of Computer Science and Engineering, University of
Buffalo, State University of New York, Tech. Rep., 2007.

[12] D. Tsirogiannis, S. Guha, and N. Koudas, “Improving the Performance
of List Intersection,” Proceedings of the VLDB Endowment, vol. 2, no. 1,
pp. 838–849, 2009.

[13] R. Rojas, “The Backpropagation Algorithm,” in Neural Networks.
Springer, 1996, pp. 151–184.

[14] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen, Introduction

to Algorithms, Third Edition. MIT Press, 2009.
[15] J. Forney, G.D., “The Viterbi Algorithm,” Proceedings of the IEEE,

vol. 61, no. 3, 1973.
[16] G. D. Forney Jr, “The Viterbi Algorithm: A Personal History,”

arXiv:cs/0504020, 2005.
[17] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-

tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[18] R. A. Wagner and M. J. Fischer, “The String-to-String Correction
Problem,” Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.

	Introduction
	Methodology
	Generating the index
	Network output activations
	Extracting n-grams from the network output
	Index access with incomplete information
	Intersection of n-gram hit lists
	Confidence value for matched entries
	Single word detection vs. whole line decoding

	Results
	Discussion
	References

